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Abstract  

This document describes the algorithms developed in WP3 of the Baltic+ SeaLaBio project. It covers four main and 
sequential parts: the atmospheric correction, the in-water processing, the S2-S3 data merging and the 
biogeochemical modelling. 

Glossary 

AC Atmospheric correction 
ADF Auxiliary Data File 
API Application Programming Interface 
ATBD Algorithm Theoretical Basis Document 
BGC Bio Geo Chemical 
BRDF Bidirectional Reflectance Distribution Function 
C2RCC Care 2 Regional Coast Color 
CDOM Coloured Dissolved Organic Matter 
CGT Code Generation Tool 
Chl a Chlorophyll a 
CO2 Carbon dioxide 
DOC Dissolved Organic Carbon 
DOM Dissolved Organic Matter 
FUB Free University of Berlin (EO data processor) 
ECMWF European Centre for Medium-Range Weather Forecasts 
EO Earth Observation 
ERGOM  Ecological Regional Ocean Model 
ESA European Space Agency 
EUMETSAT European Organisation for the Exploitation of Meteorological Satellites 
FR Full Resolution (OLCI) 
FT Flow Through 
GUM Guide to the expression of Uncertainty in Measurement 
H2O Water vapour 
HELCOM Helsinki Commission 
HZG  Helmholtz-Zentrum Geesthacht 
GEMS Geostationary Environment Monitoring Spectrometer 
GHG  Green-house gas 
ICES  International Council for the Exploration of the Sea 
IOCS International Ocean Colour Science meeting 
IOP  Inherent Optical Properties 
IOW Leibniz Institute for Baltic Sea Research Warnemünde  
LUT Look-up table 
MERIS Medium Resolution Imaging Spectrometer 
MODIS Moderate Resolution Imaging Spectroradiometer  
MOM Modular Ocean Model 
MSI MultiSpectral Instrument 
MTR Mid Term Review 
NCEP National Centers for Environmental Prediction 
NIR Near infrared 
NLLSQ Non-Linear Least-SQuares 
NN  Neural Network 
NO2 Nitrogen dioxide 
O3 Ozone 
OLCI  Ocean and Land Color Imager 
OMI Ozone Monitoring Instrument (Aura mission) 
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ONNS  OLCI Neural Network Swarm 
PAR Photosynthetically Active Radiation 
POC Particulate Organic Carbon 
POLYMER  POLYnomial based algorithm applied to MERIS 
RD Requirement Baseline Document 
RR Reduced Resolution (OLCI) 
SeaLaBio Sea-Land Biogeochemical linkage 
S2 Sentinel-2 
S3 Sentinel-3  
SAG  Scientific Advisory Group 
SNAP Sentinel Application Platform 
SRF Spectral Response Function 
TEMPO Tropospheric Emissions: Monitoring of Pollution 
TOA Top of Atmosphere 
TROPOMI TROPOspheric Monitoring Instrument 
TSM Total Suspended Matter 
WP Work Package 
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List of Symbols  

 

Group Symbol Definition Dimension/Unit 

wavelength 𝜆 Wavelength nm 

ge
om

et
ry

 

𝜃௦ Solar zenith angle degrees 

𝜃௩ View zenith angle degrees 

𝜇௦ Cosine of solar zenith angle dimensionless 

∆𝜑 Relative azimuth angle degrees 

M Air mass fraction (downward + upward) dimensionless 

ra
di

om
et

ry
 

𝐹(𝜆) Extraterrestrial Solar irradiance W m-2 nm-1 sr-1 

Lt(𝜆) TOA radiance W m-2 nm-1 sr-1 

𝜌(𝜆) 
Aerosol reflectance, including multiple 
scattering with Rayleigh 

dimensionless 

𝜌
ௗ(𝒙, 𝜆) 

Model of aerosol reflectance as a function of 
atmospheric unknowns 

dimensionless 

𝜌ீ(𝜆) Sun glint reflectance  dimensionless 

𝜌(𝜆) TOA reflectance corrected for gaseous 
absorption and sun glint 

dimensionless 

𝜌(𝜆) TOA reflectance corrected for gaseous 
absorption 

dimensionless 

𝜌௧ Path reflectance (𝜌 + 𝜌ோ) dimensionless 

𝜌ோ(𝜆) Rayeigh reflectance (molecular) dimensionless 

𝜌ோ(𝜆) 
TOA reflectance corrected for gaseous 
absorption, sun glint and Rayleigh scattering 

dimensionless 

𝜌ோ
ௗ(𝒙, 𝒙௪ , 𝜆) 

Model of Rayleigh corrected reflectance as a 
function of atmospheric and marine 
unknowns 

dimensionless 

𝜌௧(𝜆) TOA reflectance dimensionless 

𝜌௪(𝜆) Marine reflectance dimensionless 

𝜌௪
ௗ(𝒙௪, 𝜆) 

Model of marine reflectance as a function of 
marine unknowns 

dimensionless 

op
tic

al
 

th
ic

kn
es

s 𝜏ேைଶ(𝜆) 
Effective absorption coefficient of NO2 for a 
unit content  

kg-1 m2 

𝜏ைଷ(𝜆) 
Effective absorption coefficient of O3 for a 
unit content  

kg-1 m2 

𝜏ோ(𝜆) Rayleigh optical thickness  dimensionless 

tr
an

sm
itt

an
ce

 

𝑡(𝜆) 
Total diffuse transmittance, accounting for 
aerosol and Rayleigh contribution, 
downward + upward 

dimensionless 

 



Project: Baltic+ Theme 2 – SeaLaBio   ATBD V2 

ESA Contract No. 40000126233/18/I-BG  Date 20.11.2020 

 

 

7 

 

Group Symbol Definition Dimension/Unit 

𝑇(𝜆) 
Direct transmittance, accounting for aerosol 
and Rayleigh contribution, downward + 
upward 

dimensionless 

𝑡ுଶை(𝜆) H2O transmittance, downward + upward dimensionless 

𝑡ேைଶ(𝜆) NO2 transmittance, downward + upward dimensionless 

𝑡ைଷ(𝜆) O3 transmittance, downward + upward dimensionless 

A
nc

il
la

ry
 d

at
a 

H2O Water vapour content kg m-2 

NO2 Dioxide nitrogen content  kg m-2 

O3 Ozone content kg m-2 

𝑃 Pressure at sea level hPa 

𝑤௨ Zonal wind speed m s-1 

𝑤௦ Longitudinal wind speed m s-1 

M
in

im
iz

at
io

n 
al

go
ri

tm
 

𝑐, 𝑐ଵ, 𝑐ଶ 
Coefficients of POLYMER atmospheric 
model 

dimensionless 

𝑎ఝ Absorption coefficient of phytoplankton 
pigment 

m-1 

𝑎ௗ௧ Absorption coefficient of detrital particles m-1 

𝑎 Absorption coefficient of yellow substance m-1 

𝑏 Scattering coefficient of particles (non-
white) 

m-1 

𝑏௪ scattering coefficient of white particles m-1 

𝑏𝑤𝑑𝑁𝑁(𝝆௪) 
In-water backward NN expressed as a 
function of a spectral marine reflectance 

dimensions of the 
IOPs 

𝑓𝑤𝑑𝑁𝑁(𝒙௪) 
In-water forward NN expressed as a function 
of marine unknowns (IOPs) 

dimensionless 

n 
number of wavelengths used in the AC 
inversion 

dimensionless 

p 
number of degrees of freedom of the AC 
inversion 

dimensionless 

𝒙 
Generic notation for the degrees of freedom 
of the atmospheric correction related to the 
atmospheric model 

dependent on the 
exact variables 

𝒙௪ 
Generic notation for the degrees of freedom 
of the atmospheric correction related to the 
marine reflectance model 

dependent on the 
exact variables 

𝜒ଶ(𝒙 , 𝒙௪) 
Cost function of the minimization algorithm 
as a function of atmospheric and marine 
unknowns 

dimensionless 
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1 Introduction 
This document describes the algorithms developed in WP3 of the Baltic+ SeaLaBio project. It covers four main and 
sequential parts: 

 The atmospheric correction (AC): processing of the satellite data from top-of-atmosphere radiometry to 
fully-normalized marine reflectance; 

 The in-water processing: computation of marine geophysical product from the marine reflectance; 

 The S2-S3 data merging: synergetic combination of both missions to extend spatial and temporal range of 
the EO products; 

 The biogeochemical modelling: final processing giving access to the biogeochemical processes in the 
Baltic Sea (primary production, carbon cycle, linkage with terrestrial loads…) 

For each step, this document describes in detail the algorithm: models, data sources, processing steps, output data. 
A scientific analysis justifies the specific methodology proposed in the project. The requirements on the algorithms 
were preliminary described in the Requirement Baseline document (RB) and are not further detailed in this ATBD.  

This is the version V2.3 of the ATBD including updates made until Sep 30, 2020.  
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2 Algorithm description 

2.1 Atmospheric correction 

2.1.1 Processing outline 

The computation of marine reflectance from top-of-atmosphere (TOA) radiance requires a number of corrections, 
the most challenging being associated to the aerosol identification. Each step in the processing outline (Figure 2-1) 
is described in detail in the following sections. 

 

 

Figure 2-1. Processing outline of the atmospheric correction starting from OLCI L1 and S2-MSI L1c data.  

2.1.2 Geometric and spectral processing 

OLCI has been specifically designed for ocean colour processing so that its radiometry at pixel level can be used in 
a straightforward manner in the processing, for a given spatial resolution (Full Resolution, FR or Reduced 
Resolution, RR) and for all spectral bands, which have a small width. The exact wavelength of each OLCI detector 
is used in the processing, i.e. there is no “smile correction”. 

Sentinel-2/MSI, on the other hand, inherits from the Land application and has a different resolution for each band, 
and also larger bandwidths. The first characteristic requires a data resampling. The choice is made to downsample 
the MSI radiometry at 60 m resolution. This is done by the SNAP module S2Resampling (resampling with spatial 
mean for the radiometry, and logical operator “or” for the flags). Regarding spectral resolution, an equivalent 
wavelength is computed for each band, using MSI spectral response function (SRF). We use the most recent SFRs 
of S2-A and S2-B provided by ESA on 19 December 2017 (Figure 2-2), ref. COPE-GSEG-EOPG-TN-15-0007 
version 3, available online at https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/document-library/-
/asset_publisher/Wk0TKajiISaR/content/sentinel-2a-spectral-responses. These equivalent wavelengths can then be 
used in the downstream processing similarly to OLCI for Rayleigh and aerosol correction (monochromatic 
formulation).  

The bands potentially used in the atmospheric correction correspond to bands provided by the forward in-water NN 
(see section 2.2.6 for more description on the marine radiometric model): 

 OLCI: 400, 412, 443, 490, 510, 560, 620, 665, 674, 681, 709, 754, 779, 865, 885, 1020 
 MSI: 443, 490, 560, 665, 705, 740, 783, 865 

The actual bands selected in the inversion can be a subset, as described hereafter. 
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Figure 2-2. S2A and S2B SRF for visible bands from 400 to 1000 nm. Source: ESA file ref. S2-SRF_COPE-GSEG-
EOPG-TN-15-0007_3.0.xlsx 

2.1.3 Data masking 

For OLCI, pixels flagged in the Level1 product as either INVALID, LAND, COASTLINE or BRIGHT are masked 
and not further processed. To process properly inland waters, systematically flagged as LAND and not WATER in 
the Level1 product, the LAND mask is actually handled as LAND AND NOT INLAND_WATER. 

For MSI, pixels are masked if the radiometry at band B8 (842 nm) is negative or above 0.1. 

The IdePix processor provides a dedicated pixel classification for both sensors, which allows to identify e.g. 
opaque and semitransparent clouds, snow/ice or cloud shadows. It is applied in the AC code, before the 
identification of the aerosol, and helps to find valid pixels which can be processed successfully. 

2.1.4 Radiance to reflectance conversion 

The OLCI TOA radiometry, 𝐿௧, is converted to reflectance by: 

𝜌௧(𝜆) = 𝜋
𝐿௧(𝜆)

𝜇௦𝐹(𝜆)
 (1) 

Where 𝜇௦ is the cosine of the sun zenith angle and 𝐹 the solar illumination given in the OLCI Level1b product, 
already corrected for the Earth-sun distance at the acquisition time (see Sentinel-3 OLCI Marine User Handbook, 
2018). MSI data are already provided in reflectance values. 

2.1.5 Gaseous correction 

The TOA reflectance is corrected for absorption of O2, O3, NO2 and H2O at relevant bands as done in the standard 
OLCI processing (Fischer et al., 2010): 

𝜌(𝜆) =
𝜌௧(𝜆)

𝑡ைଶ(𝜆) ∗ 𝑡ைଷ(𝜆) ∗ 𝑡ேைଶ(𝜆) ∗ 𝑡ுଶை(𝜆)
 (2) 

Transmittance of O3 is computed by: 

𝑡ைଷ(𝜆) =  𝑒ିఛೀయ(ఒ)∗ைଷ∗ெ (3) 
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Where 𝜏ைଷ(𝜆) is the effective absorption coefficient of ozone for a unit content (1 DU), O3 is the actual ozone 
content (in DU; converted from kg/m2 for OLCI) and 𝑀 is the total air mass compute by 

𝑀 =  
1

cos 𝜃௦
+

1

cos 𝜃௩
 (4) 

Where 𝜃௦ and 𝜃௩ are the solar and viewing zenith angle, respectively. 

Similarly, transmittance of NO2 is given by 

𝑡ேைଶ(𝜆) =  𝑒ିఛಿೀమ(ఒ)∗ேைଶ∗ெ (5) 

Where 𝜏ேைଶ(𝜆) is the effective absorption coefficient of nitrogen dioxide for a unit content (1 kg/m2) and NO2 a 
climatological value of nitrogen dioxide content (in kg/m2) computed per latitude, longitude and day in the year, as 
tabulated in the operational OLCI Level-2 ground segment (Fischer et al., 2010). 

Among the bands currently involved in the AC, only 709 nm is significantly affected by water vapour (H20). The 
OLCI water vapour correction, inherited from MERIS, is known to be inaccurate over turbid waters, such as the 
river estuaries encountered in the SeaLaBio project. The reason is that the correction neglects the albedo of the 
surface and overestimate the H2O content over bright waters. An alternative computation of H2O transmittance was 
proposed by FUB (J. Fischer), based on ancillary data of H2O (ECMWF): 

𝑡ுଶை(𝜆) =  𝑤𝑒ିఛಹమೀ,(ఒ)∗ுଶை∗ெ



ୀଵ

  (6) 

Where 𝑤 are weighting coefficients, 𝜏ுଶை,(𝜆) are effective absorption coefficients of water vapour for a unit 
content and H2O the actual water vapour in kg/m2. These coefficients are all stored in a LUT of early OLCI 
reprocessing. The advantage of this formulation is to be independent of the surface reflectance, but it has been 
reported that it could be globally biased (S3-MPC, personal communication). For this reason, it is currently decided 
to discard 709 nm for OLCI AC (similarly to what does POLYMER). Further inspection beyond the scope of the 
project would be required with OLCI data to check the problem at 709 nm (comparison between the observed and 
predicated radiometry) and to see whether this bands could improve the inversion. 

Transmittance of O2 absorption, only relevant for OLCI band 779 nm, is implemented as in the operational ground 
segment through a Look-up table depending on normalized radiometry at 779, pressure, wavelength and geometry. 

The meteorology data (O3, H2O) are directly given in OLCI Level1b product (ECMWF data, Sentinel-3 OLCI 
Marine User Handbook, 2018). For MSI, this data is automatically downloaded from a repository at  
https://oceandata.sci.gsfc.nasa.gov/Ancillary/Meteorological/ , which provides O3 data (24h Aura OMI) and water 
vapour data (6h NCEP). The auxiliary data required by MSI (𝜏ைଷ, 𝜏ேைଶ) are taken from the OLCI LUTs and 
interpolated to MSI bands. 

2.1.6 Sun glint correction 

The sun glint reflectance is corrected through the statistical model of sea surface roughness of Cox and Munk 
(1954a, 1954b): 

𝜌(𝜆) = 𝜌(𝜆) − 𝑇(𝜆)𝜌ீ(𝑤௨, 𝑤௩) (7) 

Where 𝜌ீ is given by the Cox and Munk model for a directional wind speed (𝑤௨, 𝑤௩) and 𝑇 is the direct 
transmittance (upward and downard). At this stage the aerosol amount is unknown and thus neglected; only the 
attenuation due to Rayleigh is included: 

𝑇(𝜆) = 𝑒ିఛೃ(ఒ)∗ெ (8) 

Where 𝜏ோ is the optical thickness, corrected for pressure (see section 2.1.7). 

This correction is known to suffer from inaccurate estimate of the wind speed. Furthermore, the statistical 
relationship between surface wind and sea roughness might be not applicable s to decameter scales sensor such as 
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Sentinel-2 (Harmel et al. 2017). It must be seen as a first order correction, and residual sun glint (or overcorrection) 
is expected to be further handled in the aerosol correction through a spectrally white term, similarly to POLYMER. 

2.1.7 Rayleigh correction 

Rayleigh correction removes the effect of the air molecules: 

𝜌ோ(𝜆) = 𝜌(𝜆) − 𝜌ோ(𝜆) (9) 

The Rayleigh reflectance, 𝜌ோ, is interpolated in a pre-computed LUT as a function of geometry and Rayleigh 
optical thickness. This is a pure Rayleigh computation, without any other atmospheric component. Rayleigh optical 
thickness is itself corrected for pressure (ratio of actual to standard pressure) and account for the depolarization 
factor of Bodhaine et al. (1999), with a fixed amount of CO2 of 400 ppm. This correction is in mature state and we 
do not expect large uncertainties for the 𝜌ோ term. Nevertheless, the Rayleigh LUTs will be checked for the next 
version of this document. See section 5.2 for more details on the Rayleigh LUT. 

2.1.8 Aerosol correction 

Aerosol identification and correction is the core of the AC. A key idea of the present approach is that the spectral 
shape of the aerosol signal is smooth and does not vary as much as the marine spectra. It can be also expressed 
analytically with strong accuracy (see below). Thus, it should be more robust to obtain 𝜌௪ by removing the aerosol 
reflectance from the Rayleigh-corrected signal, rather than by a complex non-linear regression with the TOA signal 
(current end-to-end NN approach of C2RCC). When the aerosol reflectance 𝜌

ௗ is identified in the AC (including 
the coupling with Rayleigh) as well as the total transmittance 𝑡 (accounting for the Rayleigh, and ideally including 
the aerosol contribution), the marine reflectance is computed by: 

𝜌௪(𝜆) =
𝜌ோ(𝜆) − 𝜌

ௗ(𝜆)

𝑡(𝜆)
 (10) 

The challenge of the AC is to distinguish the aerosol and marine signals, especially over the Baltic Sea where both 
components may have same amplitude (see RB). Aerosol detection relies on a coupled ocean-atmosphere model 
𝜌ோ

ௗ: 

𝜌ோ
ௗ(𝒙, 𝒙௪ , 𝜆) = 𝜌

ௗ(𝒙, 𝜆) + 𝑡(𝒙 , 𝜆)𝜌௪
ௗ(𝒙௪, 𝜆) (11) 

Where 𝒙 refers to the generic unknowns of the aerosol model and 𝒙௪ to the unknowns of the marine model.  

Aerosol modelling - Two atmospheric models for 𝜌
ௗ have been implemented and tested. First, the model 

originally developed in POLYMER (Steinmetz et al., 2011), defined with three linear coefficients 𝒙 = (𝑐, 𝑐ଵ, 𝑐ଶ) 

𝜌
ௗ( 𝜆) = 𝑐𝑇(𝜆) + 𝑐ଵ𝜆ିଵ + 𝑐ଶ𝜌ோ(𝜆) (12) 

The interest of this model is to represent a large set of aerosols, including the coupling with Rayleigh scattering 
(Figure 2-3), as well as correcting residual effects for sun glint. 

The problem however is that the fitting coefficients have no physical meanings and can vary very much, potentially 
leading to unrealistic aerosol signal when there is a problem of decoupling with the marine reflectance. For this 
reason, we have developed and studied another model with physical constraint, based on a Multiple Scattering 
Approximation (MSA in the following). This model starts from the single scattering reflectance𝜌௦ (Gordon and 
Wang, 1994): 

𝜌௦(𝜆) =
𝜔(𝜆)𝜏(𝜆)𝑃(Θ, 𝜆)

4 cos 𝜃௦ cos 𝜃௩
 (13) 

Where 𝜔 is the aerosol single scattering albedo and 𝑃(Θ, 𝜆) the phase function depending on the scattering angle 
Θ. We then consider the classical power-law for AOT, with respect to a reference wavelength 𝜆: 

𝜏(𝜆) = 𝜏(𝜆) ൬
𝜆

𝜆
൰

ఈ

 (14) 
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Assuming that 𝜔 and 𝑃(Θ) do not vary spectrally, we have 

𝜌௦(𝜆) = 𝑐 ∗ ൬
𝜆

𝜆
൰

ఈ

 

 

(15) 

Maritime assemblage - 50% RH 

 

Coastal aerosol – 70 % RH 

 

Rural assemblage – 70 % RH 

 

Dust assemblage -90% RH 

 

Figure 2-3. Aerosol reflectance 𝛒𝐚 versus wavelength (solid lines) computed by radiative transfer modelling (OLCI 
Look-up tables) for four aerosol assemblages (see titles) and various optical thicknesses (colours, see legend). Dashed 
lines represent the fit by the polynomial shape used in POLYMER. Note that this signal includes coupling with 
Rayleigh (multiple-scattering). 

where 𝑐 varies pixel-per-pixel as function of geometry, aerosol type (phase function) and AOT. The Multiple 
Scattering Approximation (MSA) is introduced as a 2nd order relationship between 𝜌 and 𝜌௦: 

𝜌(𝜆) = 𝑎 ∗ 𝑐 ∗ ൬
𝜆

𝜆
൰

ఈ

+ 𝑏 ∗ ቆ𝑐 ∗ ൬
𝜆

𝜆
൰

ఈ

ቇ

ଶ

 (16) 

where 𝑎 and 𝑏 are fitting coefficients depending on the geometry and aerosol model. Using the value 𝜌(𝜆), we 
can rewrite 𝜌(𝜆) as: 
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𝜌(𝜆)(𝜆) = 𝜌(𝜆) ∗ ൬
𝜆

𝜆
൰

ఈ

൮
1 + 𝑘 ∗ ൬

𝜆
𝜆

൰
ఈ

1 + 𝑘
൲ (17) 

Where 𝑘 = 𝑏𝑐/𝑎. Coefficient 𝑘 is negative and will adjust for multiple scattering and absorption (decay near blue 
bands; through term 𝜔). With little multiple scattering,  𝑘 tends towards zero. Assuming the multiple scattering is 
smaller than the single scattering, its amplitude is lower than unity. The function 𝜌(𝜆) is not monotonous. With 
𝑘 = 0 it increases from NIR to blue (single scattering), but in its general form it will decrease from a given 
wavelength 𝜆 up to the blue bands. Indeed, the derivative is: 

𝜕𝜌(𝜆)

𝜕𝜆
=

𝜌(𝜆)

1 + 𝑘

𝛼

𝜆
൬

𝜆

𝜆
൰

ఈ

ቆ1 + 2𝑘 ൬
𝜆

𝜆
൰

ఈ

ቇ (18) 

And the optimum is found for 𝜆 such that 𝑘 = −1/2 ቀ
ఒಽ

ఒబ
ቁ

ିఈ
. Hence the final formulation of the MSA modelling 

with 𝜆 instead of 𝑘 write: 

𝜌
ௗ(𝜆) = 𝜌(𝜆) ∗ ൬

𝜆

𝜆
൰

ఈ

൮
1 −

1
2

ቀ
𝜆
𝜆

ቁ
ఈ

1 −
1
2

൬
𝜆
𝜆

൰
ఈ൲ (19) 

The three unknowns of the MSA modelling are 𝒙 = (𝜌(𝜆), 𝛼, 𝜆). For most aerosol, with little multiple 
scattering and absorption, 𝜆 is close to a wavelength in the blue (where we only observe this decay, still at large 
AOT). For absorbing aerosol, 𝜆 goes to the green/red. The important advantage of this modelling compared to 
POLYMER is that the three unknowns are physically bounded. Taking for instance 𝜆 = 865 𝑛𝑚, we have: 

ቐ
10ି <  𝜌(𝜆) < 0.08

−2.5 < 𝛼 < 0.5
400 < 𝜆 < 600

 (20) 

Although this modelling is based on various approximations, it also perfectly fits the radiative computations  

Maritime assemblage - 50% RH 

 

Coastal aerosol – 70 % RH 

 

Rural assemblage – 70 % RH Dust assemblage -90% RH 
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Figure 2-4. Same as Figure 2-3 but for the MSA aerosol model fitting (dashed lines). 

A drawback of the MSA approach is however that it requires a non-linear inversion and is much slower than the 
POLYMER matrix inversion. 

The diffuse transmittance 𝑡 is limited to the Rayleigh contribution and is fixed throughout the AC, as done in 
POLYMER. The difficulty is that the functional description of 𝜌

ௗ through a polynomial does not give direct 
access to the physics of the aerosol. A further difficulty is that this term may include surface effects independent of 
the aerosol (residual glint). Outside the glint, an option could be to compare 𝜌

ௗ to a database of radiative transfer 
simulation (e.g. OLCI LUTs), identify the best model aerosol model and optical thickness, and compute a more 
realistic value of 𝑡 through other LUTs of total transmittance. The impact of this simplified transmittance on the 
final marine reflectance is not straightforward but may be limited due to uncertainties compensation. Indeed, the 
same transmittance is used in the final computation of 𝜌௪, see Eq. (10), and in the computation of 𝜌 through the 
spectral fit of 𝜌ோ − 𝑡𝜌௪

ௗ. The uncertainty analysis of section 2.1.10 can theoretically handle the uncertainty of 𝑡 
and potential compensation through covariances between 𝑡 and 𝜌. Currently, the results of the Baltic+ AC do not 
suggest to further improve this modelling. 

Marine model - The marine model 𝜌௪
ௗ is described by an in-water forward neural network (NN), where the 

degrees of freedom are given by five IOPs: 

𝒙௪ = ൫𝑎ఝ, 𝑎ௗ௧ , 𝑎, 𝑏, 𝑏௪൯ (21) 

where 𝑎ఝ, 𝑎ௗ௧, and 𝑎 are the absorption coefficients for phytoplankton, detrital matter and gelbstoff (yellow 
substance), respectively, and 𝑏 and 𝑏௪ are the scattering coefficients for non-white and white particulates, 
respectivelly. These coefficients are all defined at a given reference band, here omitted to simplify the notation of 
the AC, and their spectral variations are fixed in the NN modelling. This model depends also on other known 
parameters (geometry, temperature, salinity) which are omitted in the following, so that the marine reflectance is 
computed formally as: 

𝜌௪
ௗ(𝜆) = 𝑓𝑤𝑑𝑁𝑁(𝒙௪) (22) 

Spectral matching - The inversion of the unknown variables (𝒙 , 𝒙௪) consists in minimizing the discrepancy 
between the observation, 𝜌ோ, and the model 𝜌ோ

ௗ, over a set of 𝑛 wavelengths 𝜆ଵ ⋯ 𝜆 by non-linear least-squares 
(NLLSQ): 

𝜒ଶ(𝒙, 𝒙௪) =
1

𝑛 − 𝑝


ቀ𝜌ோ
ௗ(𝒙, 𝒙௪ , 𝜆) − 𝜌ோ(𝜆)ቁ

ଶ

𝑣𝑎𝑟 ቀ𝜌ோ
ௗ(𝜆)ቁ + 𝑣𝑎𝑟൫𝜌ோ(𝜆)൯



ୀଵ

 (23) 

This 𝜒ଶ is scaled by the number of degrees of freedom (𝑛 − 𝑝), which does not change the minimization itself but 
is used further to compute uncertainties. It should be noted that the cost function corresponds also to the residual 
between the modelled and retrieved marine signal at TOA, since by Eq (10) one has 𝜌ோ

ௗ − 𝜌ோ = 𝑡𝜌௪
ௗ − 𝑡𝜌௪. 
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As shown above, the spectral shape of the aerosol signal is smooth and does not vary as much as the marine 
spectra. It can be also expressed analytically with strong accuracy. Thus, it should be more accurate to obtain 𝜌௪ by 
removing the path reflectance from the TOA signal, rather than by a complex non-linear regression with the TOA 
signal (current end-to-end NN approach used by default). Hence at convergence of the minimization process, the 
final marine reflectance is given by 

𝜌௪(𝜆) =
𝜌ோ(𝜆) − 𝜌

ௗ(𝒙, 𝜆)

𝑡(𝒙 , 𝜆)
 (24) 

In this equation the marine unknown 𝒙௪  does not appear, although it is linked to 𝒙 retrieved in the same 
optimization process. In fact, this 𝜌௪ combines 𝜌௪

ௗ(𝒙௪) and the residual of the minimization:  

𝜌௪(𝜆) = 𝜌௪
ௗ(𝒙௪, 𝜆) + 𝑟𝑒𝑠(𝜆) (25) 

Assigning the residual to 𝜌௪ rather than to 𝜌 is important because the marine signal is much more variable in 
shape, by nature. This lets a chance to retrieve spectra not represented by the initial in-water training. 

This cost function 𝜒ଶ takes into account the squared uncertainties of the model and of the observation, through 
𝑣𝑎𝑟൫𝜌ோ

ௗ൯ and 𝑣𝑎𝑟(𝜌ோ), respectively. If the uncertainties are not assigned (current version), the denominator is 
simply set to one (no spectral weighting). The chi-square is also normalized by the number of degrees of freedom, 
𝑛 − 𝑝, where 𝑝 is the number of independent unknowns. This normalization does not impact the minimization 
process but gives an insight on the performance of the spectral fitting: the 𝜒ଶ should be lower than unity for a 
successful inversion. 

The bands chosen in the 𝜒ଶ are essentially driven by the availability of the forward model to provide realistic 
reflectance and the trustiness of the input 𝜌ோ signal. For OLCI, 709 is removed as explained previously due to 
dubious water vapour correction and because fluorescence is not included in the NN simulations (yet, after the 
atmosphere is identified, the correction is done to provide 𝜌௪ at that band). Also, 1020 nm is removed because of 
dubious calibration at TOA (between 5 and 10%). For MSI, the number of bands is limited, so all bands available 
in the NN between the blue and NIR are selected. Hence, 14 bands are used for OLCI and 8 for MSI: 

 OLCI: 400, 412, 443, 490, 510, 560, 620, 665, 674, 681, 754, 779, 865, 885 
 MSI: 443, 490, 560, 665, 705, 740, 783, 865 

The direct minimization of the chi-square function for eight unknowns (three for 𝒙 and five for 𝒙௪) is numerically 
complex. To decrease the dimensionality of the problem, an iterative approach is proposed, decoupling the 
inversion in the marine and atmospheric unknowns. Two versions are proposed (Figure 2-5) and described 
hereafter. 

 

Figure 2-5. Numerical methods for the aerosol detection. Left: inversion using the forward in-water NN (used in Baltic+ 
results); right: inversion using the backward in-water NN (investigated, not used in Baltic+ results). 
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Inversion using forward in-water NN (AC currently used in Baltic+ results) 

This method iterates over a set of IOPs (𝒙௪), to identify the best match at the TOA level (Figure 2-5, left). It is 
formally analogous to POLYMER, except that the marine model is expressed through a NN. For a given 𝒙௪, the 
forward NN computes 𝜌௪

ௗ. Given this marine signal, and a first estimate of the transmittance (see below) limited 
to the Rayleigh contribution, the best aerosol reflectance 𝜌

ௗ is deduced (i.e. best 𝒙), by fitting the polynomial 
against 𝜌 = 𝜌ோ − 𝑡𝜌௪

ௗ. When taking the POLYMER formulation with 𝒙 = (𝑐, 𝑐ଵ, 𝑐ଶ), the spectral fitting 
writes as an overdetermined linear system (𝑛 > 3):  

 𝛬 ൭

𝑐

𝑐ଵ

𝑐ଶ

൱ = ൭
𝜌(𝜆ଵ)

⋮
𝜌(𝜆)

൱    where  𝛬 =  ቌ
𝑇(𝜆ଵ) 𝜆ଵ

ିଵ 𝜌ோ(𝜆ଵ)
⋮ ⋮ ⋮

𝑇(𝜆) 𝜆
ିଵ 𝜌ோ(𝜆)

ቍ (26) 

The optimal solution in least-square sense is given by introducing the pseudo-inverse matrix of 𝛬: 

൭

𝑐

𝑐ଵ

𝑐ଶ

൱ = (𝛬′𝛬)ିଵ𝛬′ ൭
𝜌(𝜆ଵ)

⋮
𝜌(𝜆)

൱ (27) 

When taking the MSA formulation, we resolve 𝒙 = (𝜌(𝜆), 𝛼, 𝜆) by a curve fitting algorithm with bounded 
constraints (the Trust Region Reflective method, Branch et al., 1999), starting from 𝒙 = (0.005, −1,443) and the 
bounds given in Eq 20. 

The retrieved 𝒙 is then used to reconstruct the modelled TOA signal through Eq. (11), 𝜌ோ
ௗ, to be compared to 

the observation 𝜌ோ. The aerosol unknown 𝒙 is thus seen as an intermediate variable, depending on 𝒙௪. The 𝜒ଶ is 
also only written as a function of 𝒙௪. The minimization is achieved with the Nelder-Mead algorithm (Nelder and 
Mead, 1965), using only evaluations of the 𝜒ଶ for various sets of 𝒙௪. The method is based on the concept of 
simplex, i.e. the simplest multidimensional polytope made of 𝑙+1 vertices for a minimisation problem in dimension 
𝑙. The cost function is evaluated on the initial vertices of the simplex, and the algorithm iteratively transforms the 
worst vertex (highest cost function) through a series of transformation (reflection, expansion, contraction) or 
possibly transforms the whole simplex (shrink), see Figure 2-6. The initial simplex is here given by a first vertex 
(first guess in 𝒙௪), and 𝑙 other vertices by a variation of step +2% in each dimension. The first guess comes from 
application of the backward NN directly on 𝜌ோ. 

Although widely used in science, the NM algorithm has little theoretical foundation and convergence property, 
except in small dimension (Lagarias et al., 1998). In POLYMER, there are 2 marine unknowns and a maximum of 
100 iterations is allowed. In the present case, there are 5 marine unknowns. When dimension is growing, it is 
known that the rate of convergence may strongly deteriorate (Han et al., 2006). A heuristic approach is to restart the 
algorithm several times while keeping a few iterations per run. Convergence over some pixels may be relatively 
fast (100 iterations), but other slower. For OLCI, a total of 300 iterations have been split into 30 main NM runs (i.e. 
30 restarts) of 10 iterations each. For MSI, whose processing is longer due to the increased number of pixels 
despite the TensorFlow package, the number of iterations has been reduced to 100 (10 restarts of 10 iterations) 
without showing degradation. 
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Figure 2-6. Nelder-Mead transformations in dimension 2. The initial simplex is in dashed line with best 
vertex x1 and worst vertex x3. Top-left: reflection; top-right: extension; bottom left: external contraction; 
bottom middle: internal contraction; bottom right: shrink. From Lagarias et al. (1998). 

The AC implemented in Baltic+ is based on this formulation and the POLYMER atmospheric modelling. The 
interest of this approach is to require only a forward model for the marine part, and a direct inversion of the 
atmospheric unknowns faster than any iterative algorithm (matrix product). In practice, the forward NN is launched 
with the TensorFlow library, extremely fast to process the full image at once (at least for OLCI images). Similarly, 
the linear algebra for the aerosol term can be applied simultaneously on all pixels (Einstein summation in Python). 
To benefit from this global processing, the Nelder-Mead algorithm has been fully recoded with capability to 
optimize all pixels simultaneously: the forward model and 𝜒ଶ are not computed iteratively on each pixel (Figure 
2-7, left), but only once on the full image, for the required transformations of the relevant vertices (Figure 2-7, 
right). This procedure is mathematically equivalent to the per-pixel case, i.e. each pixel has its own simplex 
transformed independently of the other pixels, and is extremely fast.  

 

Figure 2-7. Symbolic representation of the NM implementation requiring the launch of AC either on each single pixel 
(left) or on the full image (right). 
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Inversion using backward in-water NN (AC investigated, currently not used in Baltic+ results) 

The logic of this method is the opposite of the previous one: for a given aerosol content modelled through 𝒙, the 
marine reflectance 𝜌௪ can be directly retrieved by applying Eq (10). The best 𝒙 is supposed to be the one for 
which 𝜌௪ best follows to the marine model 𝜌௪

ௗ (i.e. there exists an optimal 𝒙௪ able to reproduce 𝜌௪). The 
iteration thus runs over 𝒙, and 𝒙௪ is simply an intermediate variable given by the backward in-water NN: 

𝒙௪ = 𝑏𝑤𝑑𝑁𝑁(𝝆௪) (28) 

The interest of this procedure is that the overall iteration involves lower dimensionality (three instead of five). The 
price is the use of the backward NN.  

The training of the backward NN is achieved over a large set of simulated pairs ൫𝒙௪
௦, 𝝆௪

௦൯ where 𝝆௪
௦ come 

from a model: 𝝆௪
௦ = 𝝆௪

ௗ൫𝒙௪
௦൯. Currently the in-water NN is trained such that it minimizes the difference 

between its output 𝒙௪ = 𝑏𝑤𝑑𝑁𝑁൫𝝆௪
௦൯ and the actual 𝒙௪

௦, over all cases. An issue is that different 
concentrations of a marine component may lead to same 𝜌௪ at a given band (saturation effect) and furthermore 
different set of IOPs 𝒙௪ may lead to same spectrum 𝝆௪ (masking effect, see Figure 2-8).  

It follows that the training is impacted by ambiguities (non-univocal link between the free parameters 𝒙௪ and 𝝆௪) 
whereas atmospheric correction only requires a realistic spectrum 𝝆௪, whatever the IOPs, to be decoupled with the 
atmospheric path reflectance. We thus propose to train the backward NN with a cost function defined in term of 
marine spectrum, i.e.: 

𝝆௪
௦ →  𝑏𝑤𝑑𝑁𝑁൫𝝆௪

௦൯ = 𝒙௪ such that 𝒙௪ = argmin
𝒙ೢ

ฮ𝑓𝑤𝑑𝑁𝑁(𝒙௪) − 𝝆௪
௦ฮ

ଶ
 (29) 

Where the squared norm ‖ ‖ଶ represents a quadratic summation over all wavelengths and all cases, with inputs 
defined either in linear or logscale and possibly normalised to their min/max range. Such new training ensures that 
the NN fits optimally to the input spectrum 𝝆௪, whatever the underlying IOPs. Minimisation of the marine 
reflectance residual, instead of the IOPs residual, is an important property used in this AC v2. To understand this 
aspect, the cost function is rewritten in term of marine reflectance, to distinguish the atmospheric and marine 
parameters: 

𝜒ଶ(𝒙, 𝒙௪) = ብ𝝆௪
ௗ(𝒙௪) −

𝝆ோ − 𝝆
ௗ(𝒙)

𝒕(𝒙)
ብ

ଶ

 (30) 

By definition of the new in-water backward NN constructed as an optimal interpolator, for any marine spectra 𝝆௪ 
and any 𝒙௪ the following inequality applies: 

ฮ𝝆௪
ௗ൫𝑏𝑤𝑑𝑁𝑁(𝝆௪)൯ − 𝝆௪ฮ

ଶ
≤ ฮ𝝆௪

ௗ(𝒙௪) − 𝝆௪ฮ
ଶ
 (31) 
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Figure 2-8. Masking effect: both plots show two different surface reflectance spectra for two chlorophyll 
concentrations of 5 and 10µg/m³, but for a TSM concentration of 1 mg/m³ (top) and for 100 mg/m³ (bottom). 
The high TSM is masking the changes in Chl. 

If we apply this inequality for 𝝆௪ defined above, we have: 

ะ𝝆௪
ௗ ൭𝑏𝑤𝑑𝑁𝑁 ቆ

𝝆ோ − 𝝆
ௗ(𝒙)

𝒕(𝒙)
ቇ൱ −

𝝆ோ − 𝝆
ௗ(𝒙)

𝒕(𝒙)
ะ

ଶ

≤ 𝜒ଶ(𝒙, 𝒙௪) (32) 

This is true for any (𝒙 , 𝒙௪) and demonstrates that minimizing the cost function in the (𝒙 , 𝒙௪) plane is achieved 
by minimising the left hand-side term in the 𝒙 dimension only: 

𝜒௧
ଶ (𝒙) = ะ𝝆௪

ௗ ൭𝑏𝑤𝑑𝑁𝑁 ቆ
𝝆ோ − 𝝆

ௗ(𝒙)

𝒕(𝒙)
ቇ൱ −

𝝆ோ − 𝝆
ௗ(𝒙)

𝒕(𝒙)
ะ

ଶ

 (33) 

Hence an iterative spectral matching approach on 𝒙 can theoretically solve the problem. To summarise, the AC v2 
writes: 

i. Start from a first guess of 𝒙 (for instance through average value of AOT and Angstrom coefficient) 
ii. Iterate on 𝒙 to minimize the cost function 𝜒௧

ଶ  define as: 
a. Translate if necessary 𝒙 in physical atmospheric property to compute and 𝒕(𝒙) 

b. Compute 𝝆௪ =
𝝆ೃି𝝆ೌ

(𝒙ೌ)

𝒕(𝒙ೌ)
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c. Apply the in-water backward NN: 𝒙௪ = 𝑏𝑤𝑑𝑁𝑁 ቀ
𝝆ೃି𝝆ೌ

(𝒙ೌ)

𝒕(𝒙ೌ)
ቁ 

d. Estimate marine reflectance by the in-water forward NN: 𝝆௪
௦௧ = 𝑓𝑤𝑑𝑁𝑁(𝒙௪) 

e. Compute 𝜒௧
ଶ = ‖𝝆௪

௦௧ − 𝝆௪‖ଶ 
iii. Stop on convergence criterion (number of iterations, threshold on cost function) 
iv. Return 𝝆௪ (main output) and 𝒙௪ (estimate of in-water properties, to be used as downstream products) 

Improved robustness is expected thanks to robustness of the in-water NN itself and the optimization of 𝒙 limited 
to a 3-dimensional space. When considering the MSA aerosol model, the optimization is conducted as previously 
with bounded-constraints. 

A crucial assumption of this AC is that the forward and backward NNs are reciprocal, see Eq (29). It has been 
checked that it is not the case of current NNs and this explains current issues in the optimization process. 
Investigation of so-called invertible neural network is on-going and will be tested when ready 

2.1.9 BRDF normalization 

The non-isotropy of the upward radiance field emerging from the ocean with respect to the sun and observation 
geometries is characterized by the Bidirectional Reflectance Distribution Function (BRDF; see e.g. Morel et al. 
2002). Because the amplitude of BRDF effects can be largely above the specified accuracy of remote-sensing 
reflectance (uncertainty of 5%), a correction is required to allow comparison with in-situ data and merge spectra of 
various sensors. 

During radiative transfer modelling, a wide range of geometries has been calculated for each combination of IOPs, 
including the fully normalized condition (sun at zenith, nadir view). A neural network has been trained with these 
spectra, so that from a given geometry and spectrum the normalized spectrum can be derived. The normalization 
NN requires log-transformed spectra. This is a limitation when the reflectance is negative at one or several bands. 
In such a case, the negative marine reflectances are constrained to the lower limit of the trainings range of the NN. 
Afterwards log-transformation is possible and the spectra can be normalized. This procedure should not introduce a 
bias when the signal is effectively very low, like in the blue or in the NIR bands for absorbing waters. 

An alternative solution not using the normalization NN consists in taking the IOPs as determined by the AC, 𝒙௪, 
and launch the foward NN in two geometries (actual, and normalized geometry with all angles set to zero) to get 
the BRDF factor: 

𝜌௪ே(𝜆) = ቆ
𝜌௪

ௗ(𝒙௪, 𝜆, 0, 0,0)

𝜌௪
ௗ(𝒙௪, 𝜆, 𝜃௦, 𝜃௦, ∆𝜑)

ቇ ∗ 𝜌௪(𝜆) (34) 

 

This approach is physically based and much easier to implement, since it does not need to train a normalization NN 
every time a new forward NN is designed. It also keep any residual in the 𝜌௪ that would not be modelled by the 
NN. The Baltic+ normalization is currently based on this solution.  

2.1.10 Uncertainty 

Our uncertainty estimate relies on the Quality Assurance framework for Earth Observation (QA4EO; Fox, 2010), 
providing a clear framework for uncertainty propagation in remote-sensing data and based on the GUM: Guide to 
the expression of Uncertainty in Measurement (JCGM, 2008). In this formalism, our main measurement (or 
calculation) equation is given Eq.(10), which can be rewritten in a vector notation for the spectral dimension: 

𝝆௪ = 𝑇ିଵ ቀ𝝆ோ − 𝝆
ௗ(𝒙)ቁ (35) 

Where 𝑇  is simply the diagonal matrix of transmittance, i.e. 𝑇 = 𝑡(𝜆) for 1 ≤ 𝑖 ≤ 𝑛. Considering the forward 
AC, the aerosol term 𝜌

ௗ actually only depends on 𝜌௪
ௗ(𝒙௪), through the atmospheric matrix 𝛬: 
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𝝆
ௗ(𝒙) = 𝛬 𝒙

= 𝛬(𝛬்𝛬)ିଵ𝛬் ቀ𝝆ோ − 𝑇𝝆௪
ௗ(𝒙௪)ቁ

= 𝑀௧ ∗ ቀ𝝆ோ − 𝑇𝝆௪
ௗ(𝒙௪)ቁ

 (36) 

 

Where 𝑀௧ is a matrix of size 𝑛 ∗ 𝑛 combining 𝛬 and its pseudo-inverse:  

𝑀௧ = 𝛬(𝛬்𝛬)ିଵ𝛬் (37) 

Assuming that most of the uncertainties of the atmospheric correction are due to the aerosol reflectance 𝝆
ௗ, 

hence the inversion of the marine IOP 𝒙௪, and neglecting radiometric uncertainty on 𝜌ோ, application of the GUM 
yields the variance-covariance matrix of 𝜌௪ as a function of the variance covariance-matrix of 𝒙௪: 

𝐶ఘೢ
= ቆ𝑇ିଵ𝑀௧𝑇

𝜕𝝆௪
ௗ

𝜕𝒙௪
ቇ 𝐶௫ೢ

ቆ𝑇ିଵ𝑀௧𝑇
𝜕𝝆௪

ௗ

𝜕𝒙௪
ቇ

்

 (38) 

This variance-covariance matrix of size 𝑛 ∗ 𝑛 gives the complete uncertainty of 𝜌௪, including the spectral 
correlation on the extra-diagonal terms: 

𝐶ఘೢ
= ቌ

𝑣𝑎𝑟൫𝜌௪(𝜆ଵ)൯ ⋯ 𝑐𝑜𝑣൫𝜌௪(𝜆ଵ), 𝜌௪(𝜆)൯

⋮ ⋱ ⋮
𝑐𝑜𝑣൫𝜌௪(𝜆ଵ), 𝜌௪(𝜆)൯ ⋯ 𝑣𝑎𝑟൫𝜌௪(𝜆)൯

ቍ (39) 

Similarly, 𝐶௫ೢ
 is of size 𝑛௪ ∗ 𝑛௪ with 𝑛௪ = 5 and represents the full uncertainty of the 5 IOPs. 

In Eq. (38), the transmittance vanishes on the diagonal term, but are kept for the sake of completeness of the 
covariance, and also because the output bands of 𝑇ିଵ are not necessarily identical to the bands used in 𝑇 for the 

aerosol detection. The Jacobian matrix 
డ𝝆ೢ



డ𝒙ೢ
 is of size 𝑛 ∗ 𝑛௪ and represents the sensitivity of the marine model to 

the IOPs; it is noted J hereafter: 

𝐽 =
𝜕𝝆௪

ௗ

𝜕𝒙௪
 (40) 

Computation of uncertainties of marine reflectance hence amounts to computation of 𝐽 and 𝐶௫
, both at 

convergence of the minimization process, as described below. The uncertainties given in the output product at all 
bands are the square root of the diagonal terms of 𝐶ఘೢ

.  

The Jacobian matrix can be approximated by first order Taylor expansion, thanks to the evaluation of 𝝆௪
ௗ on the 

𝑛௪ + 1 vertices of the final simplex. Let us note 𝒙(ଵ) the best vertex at convergence (i.e. retrieved 𝒙௪), and  
𝒙(ଶ) ⋯ 𝒙(ೢାଵ) the 𝑛௪ other vertices of the simplex. Then for a given wavelength 𝜆, the vector column  𝐽 =
డ𝝆ೢ

(ఒೖ)

డ𝒙ೢ
 is solution of the 𝑛௪ ∗ 𝑛௪ linear system: 

൮

𝑥ଵ
(ଶ)

− 𝑥ଵ
(ଵ)

⋯ 𝑥ೢ

(ଶ)
− 𝑥ೢ

(ଵ)

⋮ ⋱ ⋮

𝑥ଵ
(ೢାଵ)

− 𝑥ଵ
(ଵ)

⋯ 𝑥ೢ

(ೢାଵ)
− 𝑥ೢ

(ଵ)
൲ 𝐽 = ቌ

𝜌௪
ௗ൫𝒙(ଶ), 𝜆൯ − 𝜌௪

ௗ൫𝒙(ଵ), 𝜆൯

⋮
𝜌௪

ௗ൫𝒙(ೢାଵ), 𝜆൯ − 𝜌௪
ௗ൫𝒙(ଵ), 𝜆൯

ቍ (41) 

The matrix of the linear system, (Δ𝑋) = 𝑥
()

− 𝑥
(ଵ), does not depend on wavelength and can be inversed once 

only for a given pixel to retrieve all columns of the Jacobian matrix 𝐽. Furthermore, the efficient inversion of array 
of matrices in Python (module linalg.inv) allows to do it for all pixels of the image at once, as far as Δ𝑋 and the 
right-hand side of Eq. (41) are defined for all pixels in a single array. The computation of 𝐽 is thus extremely fast 
over the full image, and matrix multiplication in Eq. (38) can be done similarly on all pixel simultaneously to 
compute rigorously and efficiently the per-pixel uncertainties of 𝜌௪. 
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Last, computation of the uncertainty of 𝒙௪, i.e. matrix  𝐶௫ೢ
, is the core of the uncertainty propagation. 

 NLLSQ are very advantageous for uncertainty propagation and have already been exploited in ocean colour data 
processing (Van der Woerd and Pasterkamp, 2008; Maritorena et al., 2010; Werdell et al. 2013).As done previously 
for 𝝆

ௗ, the minimization problem Eq. (23) can be rewritten in a generic matrix notation (dimension refers to 
wavelength) as a function of 𝒙௪ only: 

𝜒ଶ(𝒙௪) =
1

𝑛 − 𝑛௪
൫𝝆ோ

ௗ(𝒙௪) − 𝝆ோ൯
்

𝐶ିଵ൫𝝆ோ
ௗ(𝒙௪) − 𝝆ோ൯ (42) 

With 

𝝆ோ
ௗ(𝒙௪) = 𝑀௧ ∗ ቀ𝝆ோ − 𝑇𝝆௪

ௗ(𝒙௪)ቁ + 𝑇𝝆௪
ௗ(𝒙௪) (43) 

The 𝜒ଶ is here written in a generic form with 𝐶 accounting for spectral weights. When the input uncertainties are 
known, 𝐶 is taken as the variance-covariance matrix of 𝝆ோ. Then the theory on NLLSQ gives access to the 
uncertainty of the retrieved parameters by: 

𝑪𝒙ೢ
= ቌቆ

𝜕𝝆ோ
ௗ

𝜕𝒙௪
ቇ

𝑻

𝑪ିଵ ቆ
𝜕𝝆ோ

ௗ

𝜕𝒙௪
ቇቍ

ିଵ

 (44) 

where 
డ𝝆ೃ



డ𝒙ೢ
 is the Jacobian matrix of the model 𝝆ோ

ௗ with respect to 𝒙௪, computed when the minimum of 𝜒ଶ is 

reached. In the present situation, we have not identified any spectral shape in the uncertainty of the input 
radiometry (nor on the model), so that matrix 𝐶 is formally set to identity. In this particular case, the uncertainty 
propagation on 𝒙௪ must rely on the scalar estimate of the uncertainty on 𝝆ோ, assessed through the 𝜒ଶ metric at 
convergence (see e.g. Werdell et al., 2013 for a similar application in IOP inversion). In other word, the theory 
amounts to 𝐶 = 𝜒ଶ(𝒙௪) ∗ 𝐼ௗ. As a result, we have: 

 𝑪𝒙ೢ
= 𝜒ଶ(𝒙௪) ∗ ቆ൬

డ𝝆ೃ


డ𝒙ೢ
൰

𝑻
డ𝝆ೃ



డ𝒙ೢ
ቇ

ିଵ

 (45) 

The Jacobian matrix 
డ𝝆ೃ



డ𝒙ೢ
 is simply expressed with term already computed: 

𝜕𝝆ோ
ௗ

𝜕𝒙௪
= (𝐼ௗ − 𝑀௧)𝑇𝐽 (46) 

Once again, the matrix inversion in Eq. (45) is done globally for all pixels at once. 

In summary, the uncertainty propagations defined by Eqs. (38)- (41)- (45)-(46) amounts to linear algebra, 
implemented in an efficient way in the code over the full scene at once. We emphasize that any improved 
knowledge on the input or model uncertainties could immediately be applied in this generic formalism. For 
instance, the uncertainties of 𝜌௪

ௗ, currently assumed as spectrally white, could be determined either statistically 
(validation of the in-water forward NN against in situ radiometric measurements) or theoretically (e.g. sensitivity of 
𝜌௪

ௗ with respect to the fixed spectral slopes of the underlying IOP model) and used to define the variance-
covariance matrix 𝐶 both in the 𝜒ଶminimization, Eq. (42), and in the IOPs uncertainty, Eq. (44). 

2.2 Bio-optical model for the Baltic Sea 

Based on the in-situ data gathered over previous years in the Baltic Sea in Finland, Sweden and a special estuary 
campaign, the ranges and correlations of inherent optical properties are studied (Table 1 and Figure 2-9). The data 
suggests a weak correlation between TSM and chlorophyll concentration, which is modelled with a linear 
relationship and a wide range of scattering. For other IOPs only their ranges are considered. 
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Figure 2-9. Relationships of IOPs or in-water constituent concentrations of in-situ measurements. Sources: from 
Finland (orange), from Sweden (blue), from estuary campaign (green). Other samples (transparent, grey circles) are 
estimated from secondary variables: TSM (mg/l) from turbidity, acdom440 (m-1) converted from acdom400 (m-1), 
acdom440 (m-1) estimates from PtColor and Salinity. Chlorophyll concentration in µg/l.  
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Table 1: Overview of ranges of IOPs of Baltic Sea. Notes:  
apig_max is 8.7 , if  default C2RCC  aph* is used ( from SNAP conversion C1 = 21 C2 = 1.04 )  
*Max1: Extreme cases (educated guess) are higher than reliable observed maximum in water sampling data. 
*Max2: Exceptional extreme (educated guess) = this may be possible in some river mouths (a400: Bay of Bothnian 
rivers, TSM: South-Western Finland rivers)   

443 
nm 
1/m 

Phase 
fct, 
Fournier 
Forand SIOP min max1* max2*       Reference 

a_pig 
  

0.0119 2.37 

 

Chl_min 0.2 µg/l aph* from Ylöstalo 
et al. 2014, package 
effect included 

   
   

Chl_max1* 200 µg/l 
 

      Chl_max2* No µg/l  
a_d 

 

exp 
mean=0.0101 
SD=?               
min= 0.0075 
max=0.0128 

0.016 8.1 24.3 a_dg_min 0.16 1/m a_d slope from 
Ylöstalo et al. 2014 

a_g 

 

exp 
mean=0.0164 
SD=?               
min= 0.013 
max=0.0193 

0.15 14.6 21.9 a_dg_max1* 22.7 1/m a_g slope from 
Ylöstalo et al. 2014 

      a_dg_max2* 46.2 1/m 
 

b_tsm + exp    
mean=0.80 
SD=0.32  
min=0.30 
max=1.48 

0.19 95 285 TSM_min 0.2 mg/l Exp: Kallio 
(unpublished 
SALMON data) 

      TSM_max1* 100 mg/l  
      TSM_max2* 300 mg/l  
b_p + exp=1.87        
b_w + exp=0.0              

 

The bio-optical model is the description how to compose realistic combinations of IOPs for the Baltic Sea. These 
combinations fulfill the following relationships: 

• IOP values are within the tabled ranges of apig, ad, ag, adg, btsm  

• Backscattering of TSM is modelled as a coloured part and a white scatterer. btsm = bp + bw 

• Absorption of detritus 𝑎ௗ  is coupled with the particle backscattering bp. The model combines relationships 
defined by Ylöstalo and Doerffer. 

• 𝑎 depends on 𝑎ௗ, within range of 𝑎ௗ = 𝑎ௗ + 𝑎 

• 𝑎 is selected depending linearly on 𝑇𝑆𝑀 / bp 

The combinations of IOPs are used to simulate water leaving reflectance spectra rhow =f(apig, ad, ag, bp, bw, angles, 
wind, T, S), which conform the training dataset for neural networks. They are designed to emulate the modelling of 
spectra themselves (forward neural network), calculating a water leaving reflectance spectrum from a set of IOPs. 
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Or they are trained to solve the inverse problem (backward neural network), estimating IOP values from a given 
reflectance spectrum. In either case, values of input and output of the neural network should be more or less 
uniformly distributed to allow for a successful learning process. Uniformity in IOPs can be achieved more easily 
and closer to real world measurements by logarithmic transformation. Therefore, during the selection process of 
IOP combinations, they are often transformed first. 

2.2.1 Parameterization of particulate scattering 

𝑏௧௦ and its variability in concentration and spectral slope is modelled by two components, the coloured part 
𝑏 with a fixed spectral slope S=1.87 and a white scatterer 𝑏௪  with spectral slope zero (at 𝜆=440 nm). The 
advantage of this formulation with a white component (𝑏௪) and a spectral component (slope 𝑆) is to model any 
other spectral slope (𝑆௧௧) with a linear combination. Hence, 𝑏 and 𝑏௪ should not be individually related to 
physical quantities, only the sum makes sense. Strictly speaking, the sum of two power functions is not exactly a 
new power function. To have an idea, if the sum tries to fit a new power function at two extreme bands 𝜆 and 𝜆ଵ, a 
good approximation is: 

𝑏௧௦(𝜆) = 𝑏 ൬
𝜆

𝜆
൰

ௌ

+ 𝑏௪ ≈ 𝑏௧௦(𝜆) ൬
𝜆

𝜆
൰

ௌ

 (47) 

with 

⎩
⎪⎪
⎨

⎪⎪
⎧

𝑏௧௦(𝜆) = 𝑏௪ ∗ (1 + 𝑟)

𝑆௧௧ =

𝑙𝑜𝑔 ൮
1 + 𝑟 ∗ ൬

𝜆ଵ
𝜆

൰
ௌ

1 + 𝑟 ൲

𝑙𝑜𝑔 ൬
𝜆ଵ
𝜆

൰

 (48) 

and 𝑟 is the ratio between the two scattering components: 

𝑟 =
𝑏

𝑏௪
 (49) 

This approximation is not the best fit over all wavelengths in term of least-squares but allow to quickly understand 

the issue of the mixing. The important aspect is that the slope of the mixing depends on the ratio 𝑟 =
బ

ೢ
. When 

𝑏 = 0, 𝑟 = 0 and we retrieve logically a white component with 𝑆௧௧ = 0. Theoretically, all slopes between 0 and 
S are reachable. Hence S should represent, physically, the maximum slope observed in the Baltic. 

From in-situ measurements the distribution of 𝑆௧௧ is known to be centered around 0.8 with a standard deviation of 
0.32, and the range of 𝑏௧௦. 

Modelling takes the following steps: 

1. Select 𝑺𝒕𝒐𝒕 from a normal distribution randomly and restrict the selected slope to the interval of minimum 
and maximum values (see Figure 2-10). 

2. Select 𝒍𝐨𝐠𝟏𝟎 𝒃𝒕𝒔𝒎 from a uniform distribution from the interval of minimum, maximum=2.5 ( 𝑏௧௦,௫ =

316 mg/l). 

3. Calculate the ratio r of 𝑏 and 𝑏௪ from: 
 

𝑟 =
1 − ቀ

𝜆
440

ቁ
ௌ

ቀ
𝜆

440
ቁ

ௌ

− ቀ
𝜆

440
ቁ

ௌ (50) 
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4. Calculate 𝑏௪ =
(ఒబ)

ଵା
 

5. Calculate 𝑏 = 𝑟 ∗ 𝑏௪ 

This parameterization leads to the desired spectral slope Stot in the addition of the two components with fixed 
slopes.  

Backscattering ratio is chosen from a uniform distribution between values of 0.013 and 0.02, so that the Fournier-
Forand phase function can be applied during simulations.  

 

Figure 2-10. Distribution of spectral slopes of backscattering selected in the bio-optical model. 

2.2.2 Parameterisation of detritus absorption 

The absorption of detritus 𝑎ௗ  (also labeled absorption of non-algae particles, anap) should naturally depend on 
the total suspended matter concentration, which is already defined in the first step of the bio-optical by 𝑏௧௦ or its 
components bp and bw. A model of Doerffer (derived from investigations of the NOMAD in-situ dataset) provides a 
relationship between bp and anap, which does not return values in the needed upper range. Therefore, the model of 
Ylöstalo has been combined with it, using a uniform random process to model the variability: 

logଵ 𝑎 (442𝑛𝑚)

= logଵ൫0.079 ∗ 10୪୭భబ ∗ଵ.ଵା.ଵଶ)൯ − 2 ∗ 0.245887 + 𝑟𝑎𝑛𝑑𝑜𝑚 ∗ 4 ∗ 0.2458872  
(51) 

If the variability in the slopes of 𝑎ௗ  is to be modelled, the parameter will be split up into two components with no 
actual physical meaning and two fixed slopes (one of them 0). This approach is following the same rationale as in 
the modelling of btsm. From in-situ measurements the range of 𝑎ௗ is given. 

Modelling takes the following steps: 

1. Calculate logଵ 𝒂𝒅 as a function of bp. 

2. If the variability of slopes of 𝑎ௗ is modelled, follow a similar scheme as for 𝑏௧௦: 

a) Select slope 𝒌 from a normal distribution (mean 0.0101, standard deviation 0.002) randomly and restrict 
them to the interval of minimum, maximum values. 

b) Calculate the ratio r of 𝑎ௗଵ (slope 𝑘ଵ = 0.014) and 𝑎ௗ (slope 𝑘 = 0) from: 

𝑟 =
1 − exp(−𝑘(𝜆 − 𝜆))

exp(−𝑘(𝜆 − 𝜆)) − exp(−𝑘ଵ(𝜆 − 𝜆))
 

c) Calculate 𝑎ௗ =
(ఒబ)

ଵା
 

d) Calculate 𝑎ௗଵ = 𝑟 ∗ 𝑎 
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During the calculations of simulated water leaving reflectance spectra with Hydrolight both components are used 
so that the model includes a variability of slopes. Nevertheless, during training of the neural networks only the 
physically meaningful IOP ad is used. 

2.2.3 Parameterisation of gelbstoff absorption 

Gelbstoff absorption is a part of the absorption 𝑎ௗ = 𝑎ௗ + 𝑎, which is often measured as such. Therefore,  
𝑎 depends on the already chosen 𝑎ௗ, and the range of 𝑎 is restricted by the range of 𝑎ௗand the already selected 
𝑎ௗ. 

If the variability in the slopes of 𝑎 is to be modelled, the parameter will be split up into two components with no 
physical meaning and two fixed slopes (one of them 0). 

Modelling takes the following steps: 

1. Select log 𝒂𝒈 from a uniform distribution randomly within the interval of minimum = min(𝑎), maximum 
= max(𝑎ௗ) - 𝑎ௗ. 

2. If the variability of slopes of 𝑎 is modelled, follow the same scheme as for 𝑏௧௦: 

a) Calculate slope 𝒌 [nm-1] from Ylöstalo relationship with ag and select those below 0.016 :  

𝑘 = ቆ10.83 +
45.92

6.06 + 𝑎
ቇ ∗

1

1000
 

b) If k>0.016, select randomly from normal distribution (mean=0.0185, sd=0.001). 

c) Calculate the ratio r of 𝑎ଵ (slope 𝑘ଵ = 0.021) and 𝑎 (slope 𝑘 = 0) from: 

𝑟 =
1 − exp(−𝑘(𝜆 − 𝜆))

exp(−𝑘(𝜆 − 𝜆)) − exp(−𝑘ଵ(𝜆 − 𝜆))
 

d) Calculate 𝑎 =
(ఒబ)

ଵା
 

e) Calculate 𝑎ଵ = 𝑟 ∗ 𝑎 

The two components of ag are only used in the simulation processing, which allows for an easy modelling of the 
variability in spectral slope k. The neural network training uses the gelbstoff absorption directly. 

2.2.4 Parameterisation of chlorophyll absorption 

Investigating the Baltic Sea in-situ data leads to modelling a week linear relationship between 𝑎 and 𝑇𝑆𝑀 
(see Figure 2-9 top right). A conversion of TSM and bp (Doerffer) is used at first: 

logଵ 𝑇𝑆𝑀 = logଵ 𝑏 ∗ 1.1 + 0.12  (52) 

A linear function, which expresses the correlation in the data and the scattering, is given by: 

logଵ 𝐶ℎ𝑙 = (logଵ 𝑇𝑆𝑀 + 0.3738 − 𝑟𝑎𝑛𝑑𝑜𝑚 ∗ 4 ∗ 0.19724) ∗ 1/1.2307  (53) 

Conversion of chlorophyll concentration to pigment absorption is handled by the following expression (Ylöstalo): 

logଵ 𝑎(440𝑛𝑚) = logଵ 0.043 + (1 − 0.237) ∗ logଵ 𝐶ℎ𝑙  (54) 

The simulations use the specific pigment absorption as reported by Ylöstalo from measurements in the Baltic Sea. 

2.2.5 Finalising the IOP selection 

The bio-optical model uses several random processes during deriving a large set of combinations of IOPs. After 
that random sampling with the described dependencies, the IOPs are not uniformly distributed, as it would be 
beneficial for the neural network training. The combinations are filtered in several steps, so that the final selection 
of 80000 samples is close to uniformity within the given range for each IOP (Figure 2-11). Only the total 
backscattering coefficient is extended beyond the tabulated limits and some samples with higher btot are allowed. 
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The variability of spectral slopes in detritus and gelbstoff absorption and total backscattering is introduced (Figure 
2-12). The cross-correlations of IOPs are evenly distributed within their ranges and their expected dependencies 
(Figure 2-13). 

 
Figure 2-11. Distribution of log-transformed IOPs after filtering to achieve uniformity. This selection has been used as 
input to the simulation of water leaving reflectances. Desired ranges are indicated by vertical dashed lines. 

 

Figure 2-12. Distribution of spectral slopes of detritus absorption, gelbstoff absorption and total backscattering 
coefficient. 
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Figure 2-13. Cross-correlations of log-transformed IOPs. According to expectation apig and btot show a weak linear 
dependency. Other IOPs are evenly distributed within their limits and dependencies. 

2.2.6 Simulations of water leaving reflectances 

The water leaving reflectances are simulated with HydroLight using the IOP combinations of the bio-optical model. 
For each case out of 80000, the variables sun zenith, wind speed, salinity and temperature are randomly chosen 
(ranges: sun zenith 0-75°, windspeed 0-9 m/s, salinity 0-20 PSU and temperature 0-22° C) and held fixed. For each 
case 7 observation angles (view zenith 0-60°, view azimuth 0-180° in 10° steps) are selected randomly, leading to a 
total number of 560000 simulated spectra. The spectra are calculated at 31 wavelengths (in nm: 395, 400, 405, 412, 
443, 465, 489, 500, 510, 520, 531, 551, 555, 560, 620, 632, 659, 665, 670, 674, 678, 681, 709, 748, 754, 765, 779, 
865, 869, 885, 1020) to account for the central wavelengths of the bands of several ocean colour satellites (i.e. 
MERIS, MODIS, SeaWifS, Sentinel 3 OLCI-A and OLCI-B). 

The training dataset is reduced to the wavelengths, which are central wavelengths of the Sentinel-3 OLCI bands 
and outside absorption of the atmosphere (water vapour, oxygen). The reflectance at band 1 at 400nm is calculated 
from the simulations at 395, 400, 405nm weighted with the spectral response function of OLCI-A. There remain 16 
bands (for wavelengths, see Figure 2-14). Currently, no dedicated training dataset for S2 has been implemented: 
OLCI bands are used and, when necessary, interpolated to MSI bands. This leaves two bands (OLCI 709 -> MSI 
704 and 779->783) with a 4nm difference between central wavelengths. At 740 nm a linear interpolation between 
709 and 754 has been used as an approximation. Still, these spectra have more likely the correct spectral shape and 
the low values in the strongly absorbing water. 
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The bio-optical model leads to spectra, which have often a similar shape with the maximum of the spectrum at 
560nm (Figure 2-14). Spectra with blue water are not part of the simulations. This behaviour is in accordance with 
published spectra of the Baltic Sea (Ficek et al 2011, Kowalczuk et al 2005). 

 

Figure 2-14. Distribution of the maxima of the water leaving reflectance spectra with respect to the OLCI bands’ 
central wavelength (left). Most of the spectra have their maximum at 560nm, no spectra have been modelled with 
maxima in the blue. Example spectra (right). 

 

The simulation dataset is split into two parts: the training dataset, which is used in the machine learning process, 
and the validation dataset, which is dedicated to testing and evaluating the trained model on an independent dataset. 

2.2.7 Forward Neural Network 

The forward neural network (fwNN) is trained to emulate the simulation process in a simplified manner. During the 
investigations accompanying the training process, it has been found that the learning process is much better, if the 
number of auxiliary variables is reduced to a minimum. Instead of the full set, which is needed for the Hydrolight 
simulations, only the three angles (sun zenith, view zenith and azimuth difference) are included in the input to the 
NN. The influence of wind, temperature and salinity is learned as natural variability in the spectra. 

To avoid accumulation of specific rho_w values per band, which can lead to a tendency to reproduce this value in 
the output of the fwNN, the training data has been filtered, so that each band has more uniformly distributed values. 
Both input and output values are transformed: the reflectances and IOPs are log transformed, the angles are 
transformed by the cosine function. 

In the semi-automatic training approach, several neural networks are trained for a fixed number of epochs, to find 
the most promising one at that stage of learning with the help of the validation data. The networks differ in 
architecture and activation function (sigmoid or relu), the batch size can vary as well.  The loss function is defined 
as the mean square error of the transformed reflectances. 

The selection criteria for the best neural network are evaluating the overall accuracy in terms of absolute median of 
the difference between estimated and reference rhow per band, sum over all bands, and the precision in terms of 
standard deviation per band.  

The neural network with the architecture of 8 input neurons, three full connected hidden layers with 50x40x40 
neurons and 16 output neurons, a batch size of 20000 samples, and sigmoid activation function returned the best 
statistics after 20000 epochs. It has been trained further until 60000 epochs. The median of the error is close to zero 
for all bands (Figure 2-15), the number of outliers varies and is particularly large for bands at 674 and 681nm, 
where the chlorophyll absorption can lead to a strong peak in the spectrum (see also example spectra, Figure 2-16).  
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Figure 2-15. Difference of predicted to actual log rhow for 16 bands included in the training. The boxplot shows the 
median in orange, whiskers at Q1 – 1.5*(Q3-Q1) and Q3 + 1.5*(Q3-Q1), other points outliers, see matplotlib default. Q1 
is the first quartile 25%, Q3 is the third quartile 75%. Best fwNN after 60000 epochs. 

 

 

 

Figure 2-16. Examples of water leaving reflectance spectra (log-transformed, natural). The predicted spectrum 
(dashed) is capturing the shape of the reference spectrum (red) quite well, at extreme features (bottom right) the 
absolute values can be off. 
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2.2.8 Backward NN with minimization on rhow 

The best fwNN becomes the basis of the backward NN training, when the goal is to achieve reciprocity between 
backward and forward NN.  

The Hydrolight simulations with Baltic+ bio-optical model are subjected to the best fwNN and the output of water 
leaving spectra is used for the training. This way, the noise in the input of spectra to the backward NN can be 
reduced, as only the spectra known to the fwNN are used in the training. This might be disadvantageous, if the 
backward NN is supposed to work with any water leaving reflectance spectra; but it leads to better reciprocity. 

The training approach is the same as before, the transformations for the variables remain the same as for the fwNN. 
The loss function is built on the water leaving reflectances, which are calculated with the forward NN out of the 
IOPs estimated by the backward NN:  𝑟ℎ𝑜௪

∗ = 𝑓𝑤𝑁𝑁[𝑏𝑤𝑁𝑁[𝑟ℎ𝑜௪]]  

After 20000 training epochs the selection of the most promising architecture and batch size takes place, evaluating 
the water leaving reflectances. The best candidate is trained for a longer cycle and the best model is selected in the 
end. The best backward NN (with reciprocity) is found with an architecture of 19 input neurons (16 rhow, 3 
angles), 3 hidden layers (77x77x77) and 5 output neurons representing the IOPs of the Baltic Sea bio-optical 
model. The batch size is set to 10000, activation function is sigmoid, the training finished after 200000 epochs. 

Although the training is not focused on the minimisation of the error in IOPs, they are derived quite well (Figure 
2-17). If the reciprocity is tested focusing on the reflectance spectra, it is very well met (Figure 2-18).  By starting 
from the tabulated IOPs in the validation dataset, the baseline of reflectance spectra is calculated by subjecting 
them to the fwNN. Then, from these spectra IOPs are derived with the bwNN (trained on rho_w minimization) and 
these IOPs are again input to the fwNN, leading to the spectra, which are compared to the first fwNN output. This 
is the ideal case and it mirrors the minimization process during training. 
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Figure 2-17. Comparison of IOPs (log-transformed). IOPs in the training dataset (x-axes) versus IOP predictions 
from bwNN[fwNN[IOP]]. 

 

Figure 2-18. Example of reciprocity in the water leaving reflectance spectra. Original spectra and fwNN[original 
IOPs] (red, black dashed) are the same. Based on this spectrum from the fwNN, the bwNN is used to derive IOPs, 
which are again given to the fwNN (green dashed line). Reciprocity is nicely met. 

2.3 In-water processing 

The options for in-water processing include the in-water part of the C2RCC processor (Brockmann et al., 2016), the 
in-water part Case 2 Extreme (C2X, http://www.brockmann-consult.de/c2x/index.php/home/), band ratios 
calibrated with in situ data (e.g. Kallio et al., 2014) and the new in-water NN trained specifically for the Baltic Sea 
based on a bio-optical model optimized for the Baltic Sea during the SeaLaBio project. 
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2.3.1 Backward NN with minimization on IOPs 

While the C2RCC processor contains among others a neural network, which derives IOPs, the underlying bio-
optical model is based on observations in the North Sea and the globally distributed NOMAD dataset. The specifics 
of the Baltic Sea are not necessarily covered. The bio-optical model described above (see chapter 2.2) is dedicated 
to the conditions of the Baltic Sea including those near coast and estuaries. 

The backward NN with minimization on rhow (see section 2.2.8) is not the most suitable to replace the neural 
network of C2RCC for deriving the optically active water constituents. So instead, another backward NN has been 
trained by minimizing the error on IOPs. After selecting a NN architecture and training it for a larger number of 
epochs, the best backward NN has been identified by its minimum of the sum of absolute differences of all IOPs 
(log-transformed).   

The best NN based on the Hydrolight simulations has been trained with the ‘softplus’ activation function, a batch 
size of 20000 samples, 19 input neurons (cosine of three angles, log of rhow), three hidden layers with 77x77x77 
densely connected neurons, and 5 output neurons (log IOPs). At epoch 162806 the best reproduction of the IOPs 
has been found (Figure 2-19). The prediction of pigment absorption and both the backscattering components works 
quite well, there is only a slight underestimation of a_pig between values of -2 to -3.5 log m-1 and an 
overestimation for values below -3.5 log m-1. The gelbstoff absorption shows a higher density of validation samples 
close to the 1:1 line over the entire training range, but also some scattering. In the lower value range (below -2 log 
m-1) the prediction can lead to an overestimation. Detritus absorption is still focused on the 1:1 line for upper half 
of the training range (above -0.5 log m-1) but gets scattered rather broadly for lower values. In the very low range, 
the prediction overestimates the actual value. 
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Figure 2-19. Validation of IOPs after training the backward NN, with reference values on x-axis and the 
bwNN predictions on y-axes. All retrieved IOPs show good agreement with the reference, with some minor 
issues in the lower ranges of the absorption components. (Further details can be found in the text.) 

 

2.4 S2 and S3 data merging 

2.4.1 Synergy approach 

A synergistic use of the spectral measurements of S2 and S3 is difficult due to the differences in overpass time in 
combination with water as a rapidly changing object, and due to differences in spatial scales and viewing geometry. 
Instead, our approach consists in exploring synergy on product level, i.e. IOPs, Chl-a, TSM, CDOM, etc., which 
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are inherent water properties (i.e. they do not depend on how we optically observe them). Our methodology relies 
on two key ingredients:  

 Product calibration. Any systematic error is removed by comparison of the EO products with our validation 
dataset. This is done separately for the whole time series of each sensor.  

 Product uncertainties. Each marine product can be seen as an imperfect measurement of a real quantity (the 
measurand, corresponding to the truth), associated to an uncertainty. Consequently, we can combine 
different measurements of the same quantity and calculate averages, time series, etc., as far as we properly 
handle the output uncertainties of each product for each sensor. On a practical level, we will define areas 
near river mouths, extract CDOM-pixel values derived from satellite data (S2 and S3) from these areas, 
form a mean/median time series of all available measurements, and the use those as input data in the 
ERGOM model. Since S2 can cover areas closer to the river mount than S3, the extraction areas may be 
different. The results of using S2 data as ERGOM input are shown in the Impact Assessment Report of this 
project. 

2.4.2 Algorithm calibration 

It has been demonstrated that MSI can retrieve very well the variation and intensity of turbidity and CDOM 
absorption, after calibration with in situ data (Figure 2-20). Comparison of Chlorophyll-a computed by MSI and 
OLCI is also very good, within the range of uncertainty brought by in situ measurements Figure 2-21). The 
extensive validation dataset detailed in our proposal will thus first serve at checking the consistency between S2 
and S3 products and applying inter-calibration if required. In this respect, we can make a strong analogy with the 
synergy product of Vanhellemont et al. (2014) between MODIS and SEVIRI sensor: SEVIRI has a very limited 
radiometric sensitivity and low spatial resolution, but high temporal frequency (every 15 minutes); MODIS has 
suitable radiometric and spatial specifications for OC, but limited revisit time. The synergy consists in taking the 
relative temporal variation of SEVIRI and applying to it an absolute scaling by the MODIS retrieval. In our case, 
assuming that OLCI will give the best Level-2 product (in absolute unit), a scaling of S2 retrieval can be applied to 
get a relevant product at high spatial resolution. 

  

Figure 2-20. Left: Example of the correspondence between turbidity analysed via water samples and estimated via S2A 
and S2B (C2RCC-based) at a monitoring station (MS) location nearby a river estuary in Finland. Right: 
Correspondence of the absorption of CDOM as analysed via S2 (MSI SYKE, C2RCC-based algorithm) and field 
measured flow-through transect (FT) and water samples (WS) on a coastal estuary. In both cases in situ measurements 
have been used to calibrate the EO results. The origin of the spikes visible in the MSI SYKE data is not known. 
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Figure 2-21. Initial experiments of using s3 OLCI and S2 MSI for determining Chl-a concentrations along a flow-
through (FT) transect in an estuary (Helsinki, Finland). The data are processed using C2RCC-based approach 
(C2RCC and C2X-processors). 

2.4.3 Level-3 generation 

A Level-3 product is composed of several Level-2 products which are merged by weighting their per-pixel 
uncertainties. A monthly median/mean product is an example of this. The use of temporal aggregation reduces noise 
and the effects of cloud cover and facilitates the comparison with products from other sources. 

2.5 BGC model 

In general terms, the BGC model (Figure 2-22) simulates the marine nitrogen and phosphorus cycle. Three 
functional phytoplankton groups are involved in primary production (large cells, small cells, and cyanobacteria). A 
dynamically developing bulk zooplankton variable provides grazing pressure on the phytoplankton. Dead particles 
accumulate in the detritus state variable. In the sedimentation process, a portion of the detritus is mineralized into 
dissolved ammonium and phosphate. Another portion reaches the sea bottom, where it accumulates as sedimentary 
detritus and is subsequently buried, mineralized or resuspended into the water column, depending on the velocity of 
near-bottom currents. Under oxic conditions, some of the mineralized phosphate is bound by iron oxides and is thus 
retained in the sediment, becoming liberated when conditions become anoxic. Oxygen development in the model is 
coupled to biogeochemical processes via stoichiometric ratios, with oxygen levels in turn controlling processes 
such as denitrification and nitrification. 

The inorganic carbon cycle is represented by total inorganic carbon and alkalinity. The organic carbon cycle 
includes, in addition to the above described organic components, dissolved and particulate organic matter (DOC, 
POC). DOC is produced by primary producers mainly under nutrient limitation. DOC eventually flocculates to 
POC and sinks down. POC and DOC allow for a flexible C:N:P ratio. 
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Figure 2-22. Schematic of the biogeochemical model. 

The physical part of the model is based on the circulation model MOM (version 5.1) [Griffies, 2004] and has been 
adapted to the Baltic Sea with an open boundary condition to the North Sea, and riverine freshwater input. The 
MOM model is complemented with a sea ice model to estimate ice cover thickness and extent. The horizontal 
resolution of the model grid is three nautical miles, while vertically the model is resolved into 152 layers, with a 
layer thickness of 0.5m at the surface gradually increasing up to 2m. Both model components are coupled via 
advection-diffusion equations. 

2.5.1 Spatial resolution 

The standard setup of the BGC model used at IOW relies on 3 nautical miles (n.m.) horizontal resolution. While 
this resolution works efficiently for long-term simulations (>50y), the coast-open sea gradient is not sufficiently 
resolved for the objectives of SeaLaBio. Consequently, the horizontal resolution was increased from 3n.m. to 1n.m. 

The new setup required: 

 Adaptation of the bathymetry 
 Re-gridding of runoff data and open boundary conditions 
 Re-calibration of sub-grid parametrizations for horizontal and vertical mixing 
 Domain decomposition for parallel computing 
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Figure 2-23. CDOM absorption as seen in 3n.m. resolution (left) and 1n.m. resolution (right). 

In Figure 2-23, the simulated CDOM absorption is shown for 3n.m. und 1n.m. resolutions. The fine structures 
resolved in the higher horizontal resolution model are clearly seen. However, CDOM absorption in this model 
version is derived from salinity based on Neumann et al. (2015). 

2.5.2 Explicit CDOM state variable 

Salinity as proxy for CDOM is a rough estimate involving some uncertainties. This approach does not consider a 
CDOM decay which, although on longer time scales, disturbs the salt-CDOM relationship. Another source of 
uncertainties is the model error for salinity which has a direct impact on the salt-CDOM relationship. 

Therefore, the biogeochemical model ERGOM has been extended with an additional state variable CDOM. For 
CDOM decay, we have implemented a “photobleaching”. Ambient light in the water column will de-color CDOM 
and reduce the light absorption effect of CDOM. In the model, PAR as a measure for ambient light is available. 
The CDOM decay is: 

𝑑𝐶𝐷𝑂𝑀

𝑑𝑡
= − 𝑟 ∗ 𝑃𝐴𝑅 ∗ 𝐶𝐷𝑂𝑀 

A series of calibration simulations for the constant r0 have been performed and a reasonable r0 value is available. 

The new approach allows for the estimate of land-sea carbon fluxes due to CDOM. A first result shows Figure 
2-24. The strong annual cycle is caused by both the runoff cycle and the annual CDOM concentration (absorption) 
cycle. 
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Figure 2-24. CDOM based carbon loads to the Baltic Sea. 

The new CDOM variable needs a boundary condition in the river mouths. Therefore, a comprehensive data set for 
riverine CDOM including about 80 different rivers around the Baltic Sea and the seasonal cycle has been compiled 
from EO products. 

3 Quality assessment and diagnostic 

3.1 Quality flags 

Currently, there are no quality flags implemented within the atmospheric correction processor. However, the neural 
network approach allows for simple definitions of quality flags. The input data is checked against the range of the 
training datasets; only if the data values are inside the defined range, the NN can produce sensible results. In order 
to allow for meaningful output, the input data is constrained to these ranges. E.g. for reflectances, these values are 
usually small negatives, which are changed to low positive values. If constraints are used, this should be reflected 
in a quality flag for each of the NNs (OOS: out of scope, out of training range). Currently, an estimate of the 
quality of the AC is provided by the reduced 𝜒ଶ, at convergence. Ideally, when input uncertainties are used in the 
minimization (i.e. when residuals are scaled by these uncertainties), the 𝜒ଶ metrics can be compared to unity: 
values of the order or below unity mean a good fit between the observation and the model. However, when this 
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scaling by input uncertainties is not applied, as in the current version of the AC, the 𝜒ଶ cannot be directly compared 
to an absolute threshold. We have observed that the 𝜒ଶ is generally of the order of 10-6 and higher value occurs for 
complex situations with dubious spectra (near the shore, inland waters). Examples are provided in the scientific 
analysis hereafter. 

In addition, the results of the pixel identification (especially the detection of clouds) can be added to the suit of 
flags. 

3.2 Product uncertainty 

Uncertainties of marine IOPs have not yet been defined. Currently, only uncertainty of the AC, i.e. of marine 
reflectance, are implemented, as described in section 2.1.10 and illustrated hereafter. 

3.3 BGC model validation 

In chapter 2.5, the impact of a higher spatial resolution on the reproduction of fine-scale features have been shown. 
The changed resolution made a re-calibration of sub-grid parametrizations (e.g. turbulence) necessary. Here we 
show the model performance for temperature and salinity at two stations in the northern Baltic.  

Figure 3-1 shows salinity and temperature at HELCOM station F9 in the Bothnian Bay. Both variables are 
reasonably well reproduced by the model. However, the bottom water temperature in winter is overestimated in 
some cases by the model. A reason could be that inflow events in winter are not represented sufficiently. 
Otherwise, the simulated vertical salinity gradient shows that saline bottom water arrives at station F9. There also is 
a descending trend in the salinity observations (both at surface and at depth), which is not reproduced by the model. 
The reason for this bias in not known currently. Owing to restricted super computing resources, we are not able to 
investigate the physical model part for the origin of the bias. Since the bias is pronounced in the most norther 
model part and only in the last simulation years, we hypothesize that uncertainties in the freshwater runoff data 
might be a reason. Official runoff data by HELCOM are published with some time delay. Therefore, we use 
extrapolated data for the last simulation years. 

Figure 3-2 shows salinity and temperature at HELCOM station SR5 in the Bothnian Sea. While the surface salinity 
fits well with observations, the bottom salinity is overestimated. Temperature of surface as well as bottom water is 
reasonable reproduced. Especially for the surface salinity, the model shows a good performance. This is important, 
since at the current model development state, CDOM estimates are based on salinity. The CDOM absorption is 
estimated as: ay(440) = 1.26*S-0.627[m-1] (Neumann et al., 2015).  

Figure 3-3 shows the estimated CDOM absorption at station SR9 for model data and observations and provides an 
impression, how a salinity bias mirrors in the derived absorption.  
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Figure 3-1. Bottom (blue) and surface (green) salinity (left) and temperature (right) at HELCOM station F9 (64.7N 
22.03E, see Figure 2-23 for an orientation of stations position). Model data are shown as solid lines and observations as 
diamonds. Data source: ICES database (www.ices.dk). 

 

Figure 3-2. Bottom (blue) and surface (green) salinity (left) and temperature (right) at HELCOM station SR5 (61.07N 
19.58E, see Figure 2-23 for an orientation of stations position). Model data are shown as solid lines and observations as 
diamonds. Data source: ICES database (www.ices.dk). 
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Figure 3-3. CDOM absorption of surface water estimated from salinity at station SR5 in the Bothnian Sea. Solid line: 
Salinity from model simulation. Diamonds: Salinity from observations. 

First simulations with an explicit CDOM state variable are shown in Figure 3-4. We have to note, that the model is 
not finally calibrated. The relatively higher absorption in the Gulf of Finland due to high CDOM loads from the 
Neva River is obvious. The salinity approach cannot account for this. In addition, the vicinity of the river estuaries 
is influenced by the individual CDOM concentration of the specific river. 

Figure 3-5 shows an example for the absorption structures in the northern Baltic Sea developing in the 1 n.m. 
model. Compared to Figure 2-23 (salinity-based approach), the coast – open sea gradient is stronger.  
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Figure 3-4. CDOM absorption (440nm) in the surface water with an explicit CDOM variable (left) and estimated from 
a salt-ay relation (right) simulated with a 1 n.m. resolution model. 
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Figure 3-5. CDOM absorption (440nm) in the northern Baltic Sea derived from simulated CDOM concentration (1n.m. 
model version). 

Figure 3-6 shows CDOM absorption time series at 3 central stations. Variations may be due to a direct impact of 
river plumes or to different water masses. Especially, the absorption increase in summer in the Gotland Sea is the 
result of less vertical mixing and increasing impact of surface water. A validation is planned after the calibration 
has been finished and we will report about it in the Impact Assessment Report. 
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Figure 3-6. Time series of CDOM absorption (440nm) at 3 central stations: Bothnian Bay (upper panel), Bothnian Sea 
(middle panel), and Gotland Sea (lower panel). 
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4 Scientific analysis 
Note: the detailed description of the error and validation analysis as well as the cross-comparison experiment 
exercise are reported in the Validation Report of the project. 

4.1 Atmospheric correction 

Various analyses have been performed to justify and check relevance of the AC scheme. 

4.1.1 OLCI match-ups analysis 

Comparison of the OLCI marine reflectance processed by Baltic-AC with in situ data from three AERONET-OC 
sites relevant for Baltic+ are shown in Figure 4-1 (Gustav Dalen Tower, Helsinki Lighthouse and Palgrunden). 
Vertical lines represent the uncertainty (+/- one sigma) computed in the AC. A systematic overestimation at 412 nm 
is observed, a behavior also occurring for other ACs (see Validation Report for a more detailed comparison). 
Interestingly, the issue is confirmed by the relatively large uncertainties for that band. In the green and red bands, 
the AC is performing reasonably well, considering the low signal of these waters. It should be emphasized that the 
inverse problem solved by the AC is sensitive to the marine model (forward NN) and also to IOPs identified in the 
first guess. To illustrate this sensitivity, the same validation plots are given on Figure 4-2 when considering another 
backward NN in the first guess. Data are more scattered, yielding a reduced number of match-ups and increased 
uncertainty, but the systematic bias is generally reduced (marine reflectance at 665 nm is no longer 
underestimated).  

4.1.2 Representativity of the marine model  

The marine model 𝜌௪
ௗ has a key role in the AC since it constrains the aerosol reflectance during the minimization 

process. Application of the AC in other water types than those used to build the forward NN shows degraded 
results. On the example given in Figure 4-3 for the Venice site in the North Adriatic Sea, the performance of the 
AC is reduced over the totally different range of radiometry from 412 to 560 nm. It is likely that the marine model 
trained in the Baltic is not suitable to such waters. One may wonder about the representativity of this model even in 
the Baltic Sea, from a theoretical point of view, independently of the AC. Ideas for such analysis are 

 Inversion of the marine signal only, without atmosphere, from in-situ measurements; 
 Tests with various versions of the forward NN 

4.1.3 Chi-square and uncertainty analysis 

Maps and plots of 𝜒ଶ and of marine reflectance uncertainties are illustrated for two different regions and water 
types on Figure 4-4, Figure 4-5 and Figure 4-6. 𝜒ଶ is generally as low as 10-6, but much higher value appears in 
small complex areas where the AC fails (typically negative reflectance). Hence 𝜒ଶ can be used as a measure of the 
quality of the inversion. It is also well related to the uncertainty map, this latter having however the advantage to 
give a spectral information on the trustiness of the inversion. The absolute value of the uncertainty is strongly 
related to the level of the marine signal. In the northern Gulf of Bothnia, where the radiometry is extremely low, the 
absolute uncertainty is below 5*10-4, except at 443 were it is below 10-3 and further in the blue bands where it 
increases. These are very small values. Uncertainties are significantly higher along the south west coast of Finland, 
especially over the turbid plume of the river Kokemäenjoki. As shown previously on the match-ups, higher 
uncertainties do not necessarily mean that the marine reflectance are biased. The uncertainty estimate is a valuable 
metric to investigate the relevance of the marine model and the spectral fit. Uncertainties on retrieved marine 
reflectance would likely be reduced if the input uncertainties on 𝜌௪

ௗ would be known and handled in the 
minimization (typically, with higher uncertainties in the blue band). 
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Figure 4-1. Comparison of Baltic-AC marine reflectance (y-axis) with AERONET-OC measurements (x-axis). 
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Figure 4-2. Same as Figure 4-1 but for another tentative backward NN used in the first guess. 
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Figure 4-3. Same as Figure 4-2 with another site in the North Adriatic Sea (Venise). 

  



Project: Baltic+ Theme 2 – SeaLaBio   ATBD V2 

ESA Contract No. 40000126233/18/I-BG  Date 20.11.2020 

 

 

52 

 

𝜌ோ(443) 𝜌௪(443) 

𝜒ଶ 𝑢𝑛𝑐. 𝜌௪(443) 

Figure 4-4. Analysis of Baltic+ AC in northern Gulf of Bothnia (OLCI-A, 20180602). Same colour scale for 𝝆𝑹𝒄, 𝝆𝒘 and 
𝒖𝒏𝒄. 𝝆𝒘 (top right colour bar). 
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Figure 4-5. Spectral plot of 𝝆𝒘 (crosses), 𝝆𝒘
𝒎𝒐𝒅 (triangles) and uncertainty of 𝝆𝒘 (stars) over two pixels in the Gulf of 

Bothnia: absorbing water pin the middle of the Gulf (top graph) and bright waters near the shore (bottom graph). 
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𝜌ோ(443) 𝜌௪(443) 

𝜒ଶ 𝑢𝑛𝑐. 𝜌௪(443) 

Figure 4-6. Analysis of Baltic+ AC on the estuary of the Kokemäenjoki river (OLCI-B, 20190415). Same colour scale 
for 𝝆𝑹𝒄, 𝝆𝒘 and 𝒖𝒏𝒄. 𝝆𝒘 (top right colour bar). 
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4.1.4 Consistency of Baltic+ AC for S2 

Applicability of the spectral matching AC to S2 is more challenging due to the limited number of bands of the 
sensor, and lower signal-to-noise ratio, compared to OLCI. The consistency of the results for S2 are analysed at 
two levels: 

 Internally, by comparing the output 𝜌௪ provided by the AC with the best 𝜌௪
ௗ identified in the inversion; 

we remind that the principle of the AC is to minimize the discrepancy between both spectra. On Figure 4-7 
we see that the minimization method works well over a large range of radiometry and spectral shapes. 

 By comparing the normalized marine reflectance of OLCI and MSI over common acquisitions (possibly 
with a few hours delay). Figure 4-8 illustrates the spectra at 560 and 655 nm, which are the two bands 
considered in the project to compute CDOM (see Validation Report). The S2 data, while noisy, allows to 
see small patterns unreachable on the OLCI image (reduced resolution) but both data are very consistent in 
term of level of radiometry, for the coastal and more off-shore regions. In comparison, S2 reflectance 
provided by C2RCC at these bands is totally different and likely overestimated if we trust the OLCI data. 

 

 

 
Figure 4-7. Analysis of Baltic+ inversion for S2 acquisition in Gulf of Bothnia (14.05.2018). Top: positions of 5 reference 
points (pins1 to pins 5). Bottom: marine spectra 𝝆𝒘 (star) and best model 𝝆𝒘

𝒎𝒐𝒅 (crosses) provided by the Baltic+ 
processor over the five points.  
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Figure 4-8. Normalized marine reflectance at 560 nm (left) and 665 nm (right) over the Gulf of Bothnia on 14.05.2018, 
by three processors (top to bottom): OLCI processed by Baltic+, S2 processed by Baltic+ and S2 processed by C2RCC. 
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4.2 Bio-optical model simulations 

4.2.1 Validating simulation spectra of water leaving reflectance against in-situ spectra 

The analysis of band ratios in in-situ data showed strong correlations to CDOM absorption. These relationships can 
be utilized as tests for the simulated spectra, which are computed based on IOP combinations generated according 
to the Baltic Sea bio-optical model and the radiative transfer model implementation in Hydrolight. 

The angle dependent simulation spectra are normalized by applying the ratio of predictions from the fwNN with the 
angles set to nadir view and zenith sun or the given observation geometry. The normalized spectrum is then: 

𝜌௪
ே = 𝜌௪(𝜃௦, 𝜃௩, Δ𝜙) ∗

fwNN(IOP, 0,0,0)

fwNN(IOP, θ௦, θ௩ , Δϕ)
 

The IOPs are taken from the Hydrolight simulations and they have been the input in the simulation process. That 
way, the test of the band ratio algorithms is performed entirely in the simulation world.  

  

Figure 4-9. Band ratios of normalized water leaving reflectances of simulation data (red) in comparison with in-situ 
match-up data of OLCI rho_w processed with the Baltic+AC (blue). 

The water leaving reflectances of simulation data (see Figure 4-9, red) and the in-situ match-up data of OLCI 
processed with the Baltic+AC (blue) are both normalized by using the ratio of modelled rho_w spectra (see formula 
above). The pair of reciprocal neural networks is used to derive with the backwardNN an estimate of IOPs from the 
in-situ spectra, which are in turn the input to the forwardNN. The spectra are predicted for this set of IOPs and two 
geometries, the one representing the fully normalized conditions with all angles set to zero and the observation 
conditions. With the simulations IOPs are given, which are input to the normalization procedure.  

The band at 709nm is not part of the minimization process in the AC, due to uncertainties in the water vapour 
correction. There is a systematic difference between the ratios of simulated spectra and AC-corrected OLCI 
spectra, if the band at 709nm is considered (bottom row). 

Similar to the match-up data, the simulated band ratio 665/560 shows the clearest dependency between normalized 
rhow and the CDOM absorption. The match-up data and the simulations are showing similar relationships in the 
upper branch of the cases covered in the simulations (upper right). 

The lower branch in the ratios originates in IOP combinations with high chlorophyll concentration and high total 
backscattering with at the same time low CDOM absorption. These cases do not occur in the Baltic Sea.  



Project: Baltic+ Theme 2 – SeaLaBio   ATBD V2 

ESA Contract No. 40000126233/18/I-BG  Date 20.11.2020 

 

 

58 

 

4.2.2 Validating the normalisation approach based on simulation data 

During the simulation process, spectra have been calculated, which model the observation in nadir view, while the 
sun geometry does not change. With these spectra, the quality of the normalisation procedure by the fwNN 
predictions can be analysed. 

The validation uses the spectra in nadir view as reference and compares the (partly) normalized spectra with them, 
leaving the sun angle unchanged, but setting view zenith and azimuth difference to zero. 

𝜌௪
ே∗ = 𝜌௪(𝜃௦, 𝜃௩ , Δ𝜙) ∗

𝑓𝑤𝑁𝑁(𝐼𝑂𝑃, 𝜃௦, 0,0)

𝑓𝑤𝑁𝑁(𝐼𝑂𝑃, 𝜃௦, 𝜃௩ , Δ𝜙)
 

IOPs are taken from the HL table of simulations directly. 

The normalisation works quite well (Figure 4-10), as the example spectra show. The angle dependent spectrum (red 
line) can be successfully transformed into an estimate of the spectrum in nadir view (green), which catches shape 
and absolute values of the simulated nadir view spectrum (blue) quite well. Exceptions in the quality arise at bands 
with 674 and 681 nm central wavelength. These bands have known larger uncertainties in their prediction with the 
fwNN (see Figure 2-15, Figure 2-16) so that the normalisation might not work as well here as at other wavelengths. 

  

  

Figure 4-10. The normalized spectrum (to Nadir view, green) should agree with the simulated spectrum in 
Nadir view (blue). The angle dependent spectrum (red) is multiplied with the ratio of fwNN spectra. The 
procedure works quite well, with the exception of the bands at 674 and 681 nm.  

  

4.3 In-water processing 

See the Validation Report. 

4.4 BGC model 

Figure 2-23 clearly shows the improved representation of small-scale features by applying a higher horizontal 
model resolution. The added value is that the model results potentially become more comparable with EO products. 
This is important for validation and calibration of models with EO products. Furthermore, strong coast-open sea 
gradients are reproduced more realistically and improve the model performance in coastal areas. 
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At the beginning of the project, the BGC model estimated CDOM based on a salinity-CDOM correlation. With the 
projects progress, it becomes obvious that the BGC model benefits from EO derived CDOM data. Therefore, 
CDOM was explicitly implemented in the BGC model. The technical implementation is completed, CDOM forcing 
data (riverine loads) have been prepared, and calibration simulations have been finished. 
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5 Practical considerations 

5.1 Input and output description 

5.1.1 Atmospheric correction 

The table for input/output description is given below. Inputs and outputs are defined per pixel for the satellite 
sensor. Ancillary data come from external sources possibly at coarser resolution (e.g. meteo data), and are 
interpolated at pixel level, either already in the Level 1 product (e.g. OLCI) or in the preprocessing of the AC (e.g. 
MSI). 

Table 2: Input (i), ancillary (a) and output (o) data of the AC. 

Type 
(i/o) 

Variable Description 

i 𝜆 Wavelength (integrated for SRF) 
i 𝜃௦ Solar zenith angle 
i 𝜃௩ View zenith angle 
i ∆𝜑 Relative azimuth angle 
i lat latitude 
i lon longitude 
i Lt TOA radiance (OLCI) 
i 𝜌௧(𝜆) TOA reflectance (MSI) 
a H2O Water vapour content 
a NO2 Dioxide nitrogen content  
a O3 Ozone content 
a 𝑃 Pressure at sea level 
a 𝑤௨ Zonal wind speed 
a 𝑤௦ Longitudinal wind speed 
o 𝜌(𝜆) Aerosol reflectance, including multiple scattering with Rayleigh 
o 𝜌௧ Path reflectance (𝜌 + 𝜌ோ) 
o 𝜌௪(𝜆) Marine reflectance 
o 𝑢𝑛𝑐_𝜌௪(𝜆) Uncertainty of marine reflectance 
o 

𝑡(𝜆) 
Total diffuse transmittance, accounting for aerosol and Rayleigh contribution, 
downward + upward 

o 𝜒ଶ Cost function of the NLLSQ minimization  
o flag Quality flag – to be described 

5.1.2 BGC model 

Forcing data (chap. 5.2.2) are needed in NetCDF format. Output format of the model is also NetCDF. Usually, all 
state variables and the main process rates are diagnosed as monthly means. At selected stations daily/hourly means 
are available. However, MOM (see also chap. 5.3.2) has the possibility to adapt the output easily to the needs. 

5.2 Auxiliary data 

5.2.1 Atmospheric correction 

LUTs for OLCI gaseous correction and Cox & Munk reflectance model come from ADF of OLCI Level-2 ground 
segment (available on EUMETSAT data portal). Rayleigh LUTs come from POLYMER code (Steinmetz et al., 
2011), computed by the Successive Order of Scattering radiative transfer code (Lenoble et al., 2007). 
Meteorological data for S2-MSI come from NCEP. 
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5.2.2 BGC model 

For atmospheric forcing, a dynamical downscaling of the NCEP/NCAR reanalysis is used (https://cera-
www.dkrz.de/WDCC/ui/cerasearch/entry?acronym=coastDat-2_COSMO-CLM). Runoff data, riverine nutrient 
loads, and atmospheric depositions are derived from HELCOM data and assessments 
(http://www.helcom.fi/helcom-at-work/projects/completed-projects/plc-5-5/, http://www.helcom.fi/baltic-sea-
trends/environment-fact-sheets/hydrography/total-and-regional-runoff-to-the-baltic-sea/). The bathymetry is 
derived from www.io-warnemuende.de/topography-of-the-baltic-sea.html. 

5.3 Software implementation 

5.3.1 Atmospheric correction 

The AC is developed in Python, using the SNAP API for Python (snappy module). The input/output operations on 
S2 and S3 data, as well as the NN operators, are thus handled in a generic way. The algorithm can process both 
raster data (image) and text extractions (match-ups files). The core optimization of the AC uses the Nelder-Mead 
method, specifically coded to handle all pixels of an image at once. 

5.3.2 BGC model 

The hydrodynamic part of the model is based on MOM5.1 (www.gfdl.noaa.gov/mom-ocean-model). MOM is a 
widely used model for global and regional applications. The FORTRAN code is available from 
(github.com/NOAA-GFDL/MOM6). The biogeochemical part is the model ERGOM (Ecological ReGional Ocean 
Model). Code and the development tool CGT (code generation tool) is available from www.ergom.net. 

5.4 CPU time 

5.4.1 Atmospheric correction 

The i/o functions should theoretically be fast but current implementation has to be reconsidered for OLCI in FR 
mode (memory issue). The pre-corrections (gas, glint, Rayleigh…) are processed by array operations in a negligible 
amount of time. The most consuming part relates to the Nelder-Mead optimization of the IOPs (AC with forward 
NN). However, the matrix multi-pixel implementation can process a full scene independently of its size, i.e. the 
CPU time does not dependent on the number of pixels. With 300 iterations, the processing of a scene requires less 
than 5 min on a single core. 

S2 processing takes a slightly longer time due to resampling and meteo data reading. It is advised to resample all 
S2 data offline, once for all. 

5.4.2 BGC model 

The spatial resolution increase from 3n.m. to 1n.m. increased the computational effort 27-fold. In the current 
configuration at an Atos system (http://www.hlrn.de), the model needs at 2200 cores a wallclock time of 8h for one 
simulation year of the full spatial domain of the Baltic Sea. Available resources at high performance computing 
facilities clearly restrict the number of simulations. Especially for test and development simulations, the 3nm 
resolution is the preferred option. 
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6 Assumptions and limitations 

6.1 Atmospheric correction 

 The algorithm has been essentially designed and tested over the Baltic Sea and its performance over other 
marine and atmospheric corrections has not been assessed in this project. 

 The correction for NO2 is based on a climatology and should ideally be improved with concurrent NO2 data 
(see Tzortziou et al., 2018). To our knowledge this is a general problem for any ocean colour processing, 
not solved to date. Using satellite observations of atmospheric NO2 (e.g., TEMPO, TROPOMI, GEMS, 
Sentinel-4, Sentinel-5) has been very recently proposed but never tested so far (see proceedings of the 
IOCS 2019 meeting). Currently we advise to include the small case variability of NO2 in the uncertainty 
formalism.  

 The sun glint correction neglects effects of aerosols in the direct transmittance. This correction could be 
moved to the iterative retrieval of aerosol for improved performance. 

6.2 BGC model 

Uncertainties in CDOM estimates owing to an absorption – salinity relationship have been eliminated by 
introducing an explicit CDOM state variable. However, some limitations remain: CDOM decrease towards the 
North Sea is due to dilution and a decay process. Decay has been implemented in the model as a light dependent 
process. Beyond this dominating process other processes like bacterial activity or in situ production change the 
CDOM concentration. Furthermore, uncertainties in freshwater runoff and riverine CDOM load data propagate into 
the model domain. 
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